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Highlights 24 

• Most Large-scale Transportation Infrastructures (LTIs) act as barriers to dispersal 25 

• Not all species respond to LTIs the same 26 

• Some LTIs have no effect while others can promote dispersal in some species. 27 

• Close LTIs can have antagonistic effects on species 28 

• Conservation planning should rely on multi-species studies. 29 

  30 
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ABSTRACT 31 

Large-scale Transportation Infrastructures (LTIs) are among the main determinants of 32 

landscape fragmentation, with strong impacts on animal dispersal movements and 33 

metapopulation functioning. Although the detection of LTIs impacts is now facilitated by 34 

landscape genetic tools, studies are often conducted on a single species, although different 35 

species might react differently to the same obstacle. We surveyed four species (a snake, an 36 

amphibian, a butterfly and a ground-beetle) in a landscape fragmented by six LTIs: a motorway, 37 

a railway, a country road, a gas pipeline, a power line and a secondary road network. We 38 

hypothesized that LTIs carrying vehicles would mostly impact ground-dwelling species, possibly 39 

in a cumulative way. We showed that half of the overall explained genetic variability across all 40 

species was due to LTIs. While the butterfly was seemingly not impacted by any LTI, the genetic 41 

structure of the three other species was mostly influenced by roads and motorway. The power 42 

line did not affect any species and the gas pipeline only impacted gene flow in the ground-beetle 43 

through forest fragmentation, but roads systematically affected at least two species. Interestingly, 44 

we also showed that some LTIs could somehow promote gene flow, embankments probably 45 

providing favourable habitats for vertebrate species. Considering the high variability in species 46 

response to LTIs, we argue that drawing general conclusions on landscape connectivity from the 47 

study of a single species may lead to counterproductive mitigation measures and that multi-48 

species approaches should be more systematically considered in conservation planning.     49 

  50 
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1. INTRODUCTION 51 

The human-induced fragmentation of natural habitats is one of the main determinants of 52 

the global biodiversity collapse (Fahrig, 2003). The most ubiquitous form of habitat 53 

fragmentation is due to large-scale transportation infrastructures (LTIs; Forman & Alexander, 54 

1998). LTIs are linear infrastructures allowing the transportation of goods, vehicles or energy, 55 

such as roads, motorways, railways, power lines, pipelines and canals. They are expanding 56 

considerably, creating dense transportation networks with profound impacts on natural 57 

ecosystems. It notably deeply affects metapopulation dynamics through a reduction in population 58 

sizes in response to direct habitat degradation. It also affects metapopulation dynamics through a 59 

reduction in demographic and genetic exchanges between populations in response to a decrease 60 

in the permeability of the landscape matrix to dispersal (Balkenhol & Waits, 2009; Trombulak & 61 

Frissell, 2000). As populations become smaller and isolated, they might exhibit higher rates of 62 

inbreeding through genetic drift, resulting in an increased risk of population extinction 63 

(McCauley, 1991). Understanding the influence of LTIs on wildlife dispersal patterns is thus of 64 

critical importance to fuel conservation policies. 65 

The most obvious detrimental effects of LTIs on dispersal success are direct collisions 66 

with vehicles and physical crossing impediment when infrastructures are, for instance, fenced 67 

(Forman & Alexander, 1998; Trombulak & Frissell, 2000). Most animals are affected, from small 68 

invertebrates to large mammals (Balkenhol & Waits, 2009; Fahrig & Rytwinski, 2009). LTIs may 69 

also induce behavioral alterations that further affect nearby populations (Trombulak & Frissell, 70 

2000). For example, both breeding migrations and reproductive success of anurans can be 71 

perturbed by main roads due to sound interference with males mating calls (Bee & Swanson, 72 

2007), in turn possibly impacting effective dispersal and thus gene flow (Ronce, 2007). 73 
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Over the past fifteen years, "molecular road ecology" has emerged as a fully-fledged 74 

discipline to thoroughly estimate landscape functional connectivity (Balkenhol & Waits, 2009; 75 

Holderegger & Di Giulio, 2010). Building on population genetics, landscape ecology and spatial 76 

statistic tools (Manel & Holderegger, 2013), its objective is to elucidate how the genetic 77 

variability is influenced by LTIs and other anthropogenic obstacles, with numerous applications 78 

in species management and conservation (Segelbacher et al., 2010). However, one major 79 

limitation of such studies is that they generally focus on a single species (Balkenhol & Waits, 80 

2009; D. Keller et al., 2015), while different species may actually respond differently to the same 81 

type of infrastructure. Furthermore, they also often focus on a single LTI, while multiple LTIs are 82 

commonly built next to each other because of technical and economic constraints, notably within 83 

valleys or along coastlines: although the impacts of LTIs are then expected to add up and result 84 

in a cumulative barrier effect, some LTIs might actually be neutral to movement or even create 85 

corridors to dispersal (Bartzke et al., 2015), these antagonistic effects making the whole picture 86 

even more complex. For example, Paquet and Callagan (1996) showed that a motorway strongly 87 

impeded crossing events in wolves but that a railway and power lines located within the same 88 

study area together redirected wolves movements and thus rather acted as corridors. In the same 89 

vein, Latch et al. (2011) found that gene flow in the desert tortoise Gopherus agassizii was 90 

affected by roads but not by power lines. In highly fragmented landscapes, it is thus highly 91 

advisable to assess the concomitant influence of all existing LTIs using a multi-species approach 92 

to adopt efficient conservation policies (D. Keller et al., 2015; Richardson et al., 2016).  93 

In this study, we assessed the respective and cumulative impacts of six French LTIs in 94 

four terrestrial species with contrasted life history traits (two vertebrates and two insects 95 

including a flying species) using molecular data. We hypothesized that flying species would be 96 
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less affected by LTIs than ground-dwelling ones and that large infrastructures carrying vehicles 97 

(roads, motorways, railways) would overall be more impactful than infrastructures carrying 98 

energy (power lines, gas pipelines). We also hypothesized that the impacts of some LTIs might 99 

accumulate to shape spatial patterns of gene flow in studied species. 100 

 101 

102 
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2. MATERIAL AND METHODS 103 

2.1. Study area and biological models 104 

The study was carried out in the 'Périgord' region in southwestern France (45°07'31.8''N; 105 

0°58'56.9''E; Fig. 1). It is a 300 km2 rural landscape composed of limestone plateaus including 106 

crops, mowed meadows, deciduous forests and small villages. The hydrology is limited to small 107 

streams and ponds. Altitude ranges from 91 to 294 m above sea level. Six types of LTIs are 108 

present in this study area (from the widest to the narrowest): a fenced motorway (A89) 109 

commissioned in 2004; a low traffic single-track railway built in the 19th century; a high traffic 110 

country road (D6089) present since the 18th century; a power line and a gas pipeline constructed 111 

in 1962 and 1955, respectively, both associated with breaches in forest cover; a 1370 km dense 112 

network of low traffic secondary roads (Fig. 1). 113 

We considered four species with various life history traits in order to span a large amount 114 

of biological variability: two vertebrates (the snake Natrix helvetica and the midwife toad Alytes 115 

obstetricans) and two insects (the butterfly Maniola jurtina and the ground-beetle Abax 116 

parallelepipedus). Alytes obstetricans is a small toad widely distributed in Western Europe. It is 117 

highly sensitive to fragmentation because local populations are known to function as relatively 118 

independent entities with strong genetic structuring (Tobler et al., 2013). Natrix helvetica is also 119 

widely distributed in Western Europe and is considered to exhibit good dispersal abilities, with 120 

individuals travelling over more than 1 km in less than a month (Pettersson, 2014). A previous 121 

study did not detect any genetic structure in this species in an intensively used agricultural 122 

landscape, indeed suggesting good dispersal ability in fragmented environments (Meister et al., 123 

2010). Maniola jurtina is a univoltine butterfly which is very common in Europe with locally 124 

very high densities. It shows medium dispersal capacity with mean dispersal distances ranging 125 
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from 50 to 300 m (Stevens et al., 2013). Previous studies revealed that both land cover (arable 126 

lands and forests) and LTIs (motorway and railway) could affect its dispersal (Remon et al., 127 

2018; Villemey et al., 2016). Finally, Abax parallelepipedus is an opportunistic carnivorous 128 

ground-beetle  that inhabits the upper layer of forest litter (Loreau, 1987). It typically shows 129 

limited dispersal capacity, avoids open habitats and is highly sensitive to fragmentation by roads 130 

(I. Keller et al., 2004). 131 

 132 

2.2. Sampling and genotyping 133 

All captures were authorized by Préfecture d'Aquitaine (ref number: 134 

AD_AD_150224_arrete_06-2015_terroiko). For all species, tissues were collected between April 135 

and September in 2015 and 2016. For the two vertebrate species N. helvetica and A. obstetricans, 136 

we followed an individual-based sampling design due to overall low abundances in the field. 137 

Individual-based sampling design has been proved to be a good alternative method to 138 

population-based sampling design as less individuals are required per sampling location (1 to 4) 139 

and more geographical locations can be sampled over the landscape (Luximon et al., 2014; 140 

Prunier et al., 2013). Accordingly, the entire study area was prospected to collect toads and 141 

snakes, at night and at day time, respectively. We mainly focused on sampling locations with 142 

high probability of presence such as wetlands, ponds, rivers, woodland edges and small villages. 143 

To attract snakes and facilitate data collection, 108 artificial shelters were also laid across the 144 

study area. In A. obstetricans, some sites with high abundances were surveyed more intensely (as 145 

part of a companion demographic study), allowing up to 50 individuals to be sampled locally 146 

(see details in Appendix A). When an individual was detected, it was hand-captured and 147 

manipulated directly in the field. A GPS location (Garmin Etrex20, USA) was recorded for each 148 
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captured individual (see Fig. 1 and 2 for sampling locations). Each individual was sexed, 149 

measured, weighed, marked (to avoid sampling individual twice) and a genetic sample was 150 

collected. Captured toads were marked using 7x1.35 mm FDX-B Passive Integrated Transponder 151 

(PIT) tags (Loligo Systems, Denmark) and a non-destructive genetic sample was collected by 152 

gently opening mouth with a little metal spoon and swabbing mouth cavity for about 10 seconds 153 

(Broquet et al., 2007). We used ventral scales clipping following Brown and Parker (1976) to 154 

both mark snakes and collect DNA. We also opportunistically collected genetic samples from 155 

snakes and amphibians found dead (road kill or predation) and from snake shed skins.  156 

The two insect species M. jurtina and A. parallelepipedus were sampled within 30 sites 157 

using a classical population-based sampling design. Site locations were obtained by dividing the 158 

study area into 30 sectors using a 5x6 regular grid in QGIS (V. 2.8). In each sector and each 159 

species, a single sampling site was chosen according to the presence of suitable habitats 160 

(woodlands for beetles and grasslands for butterflies). At each sampling location, 30 individuals 161 

were sampled, resulting in 900 genetic samples per species (see Fig. 1 and 2 for sampling 162 

locations). Butterflies were captured during day time with nets. Beetles were trapped using non-163 

lethal dry pitfalls. Pitfalls were 20 cm in diameter and 15 cm in depth and were arranged in 164 

circles at regular intervals of 5 m. They were emptied every day until 30 individuals were 165 

captured. For both insect species, we collected the middle right leg of each captured individual, 166 

as both a source of DNA and a way to avoid sampling the same individual twice.  167 

 All genetic samples were stored in 70 % ethanol until DNA extraction. All material for 168 

marking animals and collecting genetic samples was washed and disinfected using absolute 169 

ethanol between each individual sampling. Care was taken to minimize animal handling and 170 

stress and all individuals were rapidly released at the place of capture after manipulation. We 171 
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amplified 13, 14, 15 and 14 polymorphic microsatellite loci in N. helvetica, A. obstetricans, M. 172 

jurtina and A. parallelepipedus, respectively. For a detailed procedure of DNA extraction, 173 

amplification and genotyping, see Appendix B. Some individuals could not be correctly 174 

genotyped because of insufficient amounts of DNA: genotypes with more than 2 loci presenting 175 

missing values were discarded to allow robust subsequent genetic analyses. We used Genepop 176 

4.2 (Rousset, 2008) to test for linkage disequilibrium among pairs of loci and deviation from 177 

Hardy-Weinberg Equilibrium after sequential Bonferroni correction to account for multiple 178 

related tests (Rice, 1989). The presence of null alleles was tested using MICROCHECKER 2.2.3 179 

(Van Oosterhout et al., 2004). Loci with null alleles and/or in linkage disequilibrium were 180 

discarded, resulting in the final selection of 13, 10, 6 and 10 microsatellite loci in toads, snakes, 181 

butterflies and beetles, respectively (Appendix B). 182 

 183 

2.3. Genetic structure and genetic distances 184 

The presence of related individuals in data sets may lead to an over-estimate of the 185 

number of clusters when assessing population structure and thus bias subsequent genetic 186 

analyses (E. C. Anderson & Dunham, 2008). We therefore used COLONY2 (Jones & Wang, 187 

2010) to identify and discard siblings within our individual-based data sets (N. helvetica and A. 188 

obstetricans, Appendix C). In the population data sets, we only retained populations for which at 189 

least 15 genotypes were available. The final data sets comprised 848 genotypes (30 populations) 190 

in A. parallelepipedus, 508 genotypes (21 populations) in M. jurtina, 115 genotypes in N. 191 

helvetica (68 sampling locations) and 358 genotypes in A. obstetricans (56 sampling locations).  192 

For each of the four final data sets, genetic structure was investigated using 193 

STRUCTURE 2.3.4 (Pritchard et al., 2000) with the admixture and the correlated allele 194 
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frequency models and prior sampling location information. We followed a hierarchical genetic 195 

clustering procedure (Coulon et al., 2008): it has been shown to allow a better detection of sharp 196 

genetic variations locally expected in the vicinity of linear features acting as barriers to gene 197 

flow (Prunier et al., 2017). At each hierarchical level, we tested the number K of clusters from 1 198 

to 10 and repeated analyses for each value 5 times. Runs were performed with a minimum burn-199 

in period of 50 000 and 50 000 subsequent Markov chain Monte Carlo (MCMC) iterations, 200 

provided the algorithm converged correctly, as indicated by the stability of the estimated α values 201 

(i.e. the Dirichlet parameter for the degree of mixing) throughout the runs. Whenever α plots 202 

showed substantial fluctuations throughout the run, , we used a burn-in period of 100 000 and 203 

100 000 subsequent MCMC iterations and adjusted the standard deviation of α from 0.025 204 

(default) to 0.5 to enhance parameter space exploration and achieve algorithm convergence 205 

(Prunier et al., 2017). We then used STRUCTURE HARVESTER (Earl & vonHoldt, 2012) to 206 

obtain ∆K statistics to infer the optimal K-value. We used this optimal K-value to perform 20 207 

runs with a burn-in period of 200 000 and 200 000 MCMC iterations. We finally compiled the 208 

ten best runs (highest lnP(D) values; Coulon et al., 2008) using CLUMPP (Jakobsson & 209 

Rosenberg, 2007) to obtain individual or population ancestry values (i.e., Q-values), measuring 210 

the level of admixture among the inferred genetic clusters. Each individual or population was 211 

assigned to the cluster for which the Q-value was higher than 0.6, following Balkenhol et al. 212 

(2014). We then repeated the analysis for each inferred cluster separately until no more structure 213 

was found in the data (same probability of assignment to each cluster across all individuals), 214 

until inferred clusters comprised less than 50 individuals or in situations where convergence 215 

could not be achieved even with a total of 2 million MCMC iterations (see Appendix D for 216 

details). For each hierarchical level, we used individual- or population-based Q-values to 217 
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compute pairwise matrices of ancestry-based hierarchical genetic distances (HGD; Balkenhol et 218 

al., 2014). HGD were only calculated for species displaying a significant genetic structure. When 219 

more than one hierarchical level was detected, each hierarchical level (HGD1, HGD2) was 220 

considered separately. We also computed classical genetic distances (GD), using the Bray-Curtis 221 

(bc) percentage dissimilarity index for the individual-based data sets and Fst for the population-222 

based data sets. While these classical genetic distances are well suited to detect surface elements 223 

affecting gene flow at a regional scale, HGD have been shown to allow a better detection of 224 

sharp genetic variations caused by linear elements such as LTIs (Prunier et al., 2017). 225 

 226 

2.4. Multiple linear regressions and commonality analyses 227 

Both classical and hierarchical genetic distances were tested against the six types of LTIs 228 

present in our study area, along with a number of covariates likely to affect patterns of genetic 229 

differentiation (isolation-by-distance IBD, difference in altitude and the following landcover 230 

features: water, crops, woodlands, grasslands and urban areas), although assessing the respective 231 

influence of these non-LTI features was not the main scope of this study (details about the effects 232 

of non-LTIs are provided in Appendix K). All LTIs but the secondary road network were coded 233 

into binary pairwise matrices, with 0 indicated that individuals/populations of each pair were on 234 

the same side and 1 indicated that they were on either side of the LTI. Because of the density of 235 

the secondary road network in the study area, this LTI (hereafter simply called Roads) was 236 

treated as other landcover features. Landcover features were defined by digitalizing the entire 237 

study area at a minimal resolution of 20 m in QGIS (V. 2.8) using national databases (BDTopo 238 

and BDCarthage) and 2015 high resolution aerial photographs from the French National 239 

Geographic Institute (IGN) with RGF93 / Lambert-93 projected coordinates. Photo-interpretation 240 
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additionally allowed digitalizing any landscape feature larger than 25 m².  Every element of the 241 

landscape was classified into 49 habitat types of the EUNIS Habitat Classification System 242 

(Davies & Moss, 1999). To assist the classification of habitats from photo-interpretation based on 243 

texture, we used 82 phytosociological quadrats randomly selected across the study area: quadrats 244 

were visited in spring and summer 2015 and the classification based on the presence of indicator 245 

species listed by the French administration. All GIS analyses were performed by a single 246 

investigator. We combined these 49 elements into six main landcover predictors (Appendix E): 247 

Water (stagnant water bodies, streams and rivers), Crops (intensive and non-intensive cultures), 248 

Woodlands (all types of forests), Grasslands (uncultivated open lands), Urban (villages, 249 

industrial sites, etc.) and Roads (all roads excluding small trails, motorway and D6089 country 250 

road). These six classes were each rasterized at a 1 m resolution using ARCGIS 10.2.2 and its 251 

SPATIAL ANALYST extension. Each raster was then used to create a resistance surface based on 252 

the spatial density of the corresponding element in the landscape. This procedure hypothesizes 253 

that a pixel covered with 100% (respectively 0%) of an unfavorable landscape feature would be 254 

100% resistant (respectively permeable) to gene flow and thus avoids assigning arbitrary 255 

resistance values to landscape features. To do so, we overlaid a 20 m grid on each spatial class 256 

and calculated the percentage of the element in each grid. For each resistance surface, we 257 

rescaled pixel resistance values to range from 1 (null or extremely low densities) to 100 (the 258 

element covers the entire pixel) and the final rescaled resistance surface was used in 259 

CIRCUITSCAPE 4.0 (McRae et al., 2016) to compute pairwise effective distances between 260 

individuals or populations. The IBD pairwise matrix was similarly obtained by running 261 

CIRCUITSCAPE on a uniform resistance surface only composed of pixels of value 1. Finally, 262 
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altitude pairwise matrices were computed as the absolute values of pairwise differences in 263 

altitude between sampling locations.  264 

The local influence of landscape features may go unnoticed if all pairs of genetic 265 

distances are retained, as isolation-by-distance might take over the influence of landscape 266 

features, with strong implications in terms of biological interpretation of results (C. D. Anderson 267 

et al., 2010; D. Keller et al., 2013). We thus considered subsets of pairwise data by defining a 268 

maximum Euclidean distance threshold between sampling locations. Following Cayuela et al. 269 

(2019), this distance threshold was selected for each species and each metric of genetic distances 270 

(GD or HGD) as the neighboring distance maximizing the model fit of a classical multiple linear 271 

model including all predictors (see Appendix F for details). For each species, we then explored 272 

the relationship between subsets of each type of genetic distances (GD or HGD) and the 273 

corresponding predictors using standard multiple linear regressions. In the case of A. 274 

obstetricans, the corresponding dataset being characterized by a skewed distribution of 275 

genotypes across sampling locations,  we used a specific Jackknife resampling procedure 276 

detailed in Appendix A so as to avoid the risk of biased inferences stemming from an over-277 

representation of some locations over the others (Prunier et al., 2013).  278 

The contributions of predictors to the dependent variables were assessed using 279 

commonality analyses (CA). Commonality analysis is a variance partitioning procedure allowing 280 

the detection and the withdrawal of statistical suppressors that are responsible for a distortion of 281 

model estimates (beta weights β and confidence intervals), thus providing decisive support when 282 

trying to assess the reliability of model parameters in face of multicollinearity. It also allows 283 

isolating the unique contribution U of each predictor to the variance in the dependent variable 284 

(for more details about CA, see Appendix G and Prunier et al., 2015, 2017; Ray-Mukherjee et al., 285 
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2014). We performed model simplification by discarding predictors identified as statistical 286 

suppressors in an iterative way following Prunier et al. (2017; see Appendix H for details). 287 

In each final simplified model, we assessed levels of collinearity among predictors using 288 

Variance Inflation Factors (Dormann et al., 2013). Because pairwise data are not independent, 289 

the p-values inferred from simplified models could not be interpreted: except in the case of A. 290 

obstetricans (see Appendix A), we thus computed 95 % confidence intervals around regression 291 

estimates using a Jackknife procedure, with 1000 replicates based on a random removal of 10 % 292 

of individuals/populations without replacement (Peterman et al., 2014). These confidence 293 

intervals were used to assess the significance of the predictors’ contributions to the variance in 294 

the corresponding genetic distances. We considered that a predictor was a robust contributor to 295 

the variance in the response variable as soon as the confidence interval about the corresponding β 296 

value did not include 0. A predictor with a positive β value was associated with an increase in the 297 

genetic distances and was interpreted as impeding gene flow. On the contrary, a predictor with a 298 

negative β was associated to a reduction in genetic distances and was thus interpreted as 299 

promoting gene flow (Jacquot et al., 2017). In the case of LTIs, this interpretation translates into 300 

two categories of LTI effects: LTI+ (impeding gene flow) and LTI- (promoting gene flow). In 301 

order to make unique contributions comparable across models, we finally computed the relative 302 

unique contribution (i.e., U/R²) of each predictor to the explained genetic variance in each 303 

model. 304 

In order to summarize our main findings across species, we summed the relative 305 

contributions of LTIs versus non-LTIs predictors as well as the relative contributions of LTI+ 306 

versus LTI- effects within each model. We then averaged these contributions across models for 307 

each species and across species. To summarize our main findings across LTIs, we also averaged 308 
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the relative unique contributions of LTI+ versus LTI- effects for each LTI and across LTIs. Non-309 

significant predictors or predictors that were absent from final simplified models (including LTI- 310 

when only LTI+ was present, and vice versa) were given a relative contribution of 0. Results 311 

were plotted in the form of 100% stacked barplots. 312 

 313 

3. RESULTS 314 

3.1. Genetic structures 315 

Structure outputs indicated a single genetic cluster in both N. helvetica and M. jurtina, 316 

suggesting high gene flow across the study area in these species (Fig. 1; Appendix D). On the 317 

contrary, we found strong hierarchical genetic clustering in both A. parallelepipedus and A. 318 

obstetricans (Fig. 2; Appendix D). We identified two hierarchical clustering levels in beetles 319 

(Fig. 2A). At the first level, 19 populations were assigned to cluster A and ten were assigned to 320 

cluster B. Cluster A included populations sampled mostly in the western part of the study area 321 

and north of the road D6089. One population at the extreme south-west could not be assigned to 322 

any of these two clusters (cross-assigned). Cluster B, was further divided into two sub-clusters at 323 

the second hierarchical level. Clusters B1 and B2 were separated by the D6089 and the gas 324 

pipeline, with B1 in the north comprising five populations and B2 in the south comprising four 325 

populations. At the second hierarchical level, only one population could not be assigned to any of 326 

these two clusters (cross-assigned). This population was located between the road D6089 and the 327 

gas pipeline, exactly in-between clusters B1 and B2. 328 

In toads, we similarly identified two hierarchical genetic levels, though with much more 329 

blurred spatial patterns. At the first level, most individuals were assigned to two clusters A and B, 330 

with no clear geographical boundaries explaining this pattern (Fig. 2B). Twenty-six individuals 331 
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could not be assigned to any of these two clusters (cross-assigned individuals), suggesting some 332 

exchanges between these two clusters. At the second hierarchical level, cluster A was further 333 

divided into two sub-clusters A1 and A2, while cluster B was further divided into five sub-334 

clusters B1 to B5 (Figure 2C), with a high number of cross-assigned individuals (69), again 335 

suggesting frequent exchanges among them. Cluster A1, located in the center of the study area, 336 

was surrounded by cluster A2, again with no clear geographical boundaries explaining this 337 

pattern. Clusters B1, B2 and B4 corresponded to unique populations, whereas clusters B3 and B5 338 

comprised individuals from different locations. The complexity of these spatial genetic patterns 339 

was also recovered when using spatial principal component analysis (sPCA; Jombart et al., 2008; 340 

Appendix I).  341 

3.2. Multiple linear regression and commonality analyses 342 

The maximum Euclidean distances between sampling locations that optimized the 343 

amount of variance in classical and hierarchical genetic distances (variance explained by full 344 

regression models) ranged from 2800 to 5700m in individual-based data sets and from 4500 to 345 

18500m in population-based data sets (Table 1; Appendix F). After simplification (Appendix H) 346 

and whatever the model, Variance Inflation Factors ranged from 1.00 to 1.56 (Appendix J), 347 

suggesting little collinearity among retained variables (Dormann et al., 2013).  348 

When considering classical genetic distances in toads, the multiple linear regression 349 

explained 3.9% of variance (Table 1). Roads (U = 0.006) were associated with an increase in 350 

genetic distances (positive β values) in this model, thus suggesting barrier effect. This predictor 351 

uniquely contributed to 16.9% of explained variance. When considering the first level of 352 

hierarchical genetic distances (HGD1), the model only explained 1.5% of the variance and did 353 

not include any LTI predictor. At the second level of the hierarchy, the model explained 6.0% of 354 
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variance in HGD2. The D6089 was associated with an increase in genetic distances (β = -0.109, 355 

U = 0.015) whereas the Motorway was detected has having a significant positive effect on toads’ 356 

effective dispersal (β = 0.125, U = 0.021). When relative contributions of LTIs were summed in 357 

each model and then averaged across models, LTIs accounted for 19.8% of total explained 358 

variance (Fig. 3A). Infrastructures were mostly associated with an increase in genetic distances, 359 

with 86.4% of variance explained by LTIs stemming from the barrier effects (Fig. 3B) of the 360 

D6089 and Roads. The 13.6% left were explained by a reduction in genetic distances across the 361 

Motorway at the second level of the hierarchy (HGD2; Fig. 3B). 362 

In snakes, the simplified model explained a small amount (4.2%) of variance in the 363 

dependent variable (Table 1) but only comprised LTIs predictors (Fig. 3A). The Motorway was 364 

associated with an increase in genetic distances and uniquely accounted for 48.5% of explained 365 

variance (U = 0.021; Fig. 3B). The two other LTIs (Roads and Railway) had unique contributions 366 

of 0.015 and 0.008, respectively, and both were associated with a reduction in genetic distances 367 

in this species, together accounting for 51.5% of explained variance (Fig. 3B).  368 

In butterflies, the simplified model explained 19.9% of variance in Fst values (Table 1). 369 

The only LTI that remained in the final model was the Power line but it did not significantly 370 

contribute to the model predictive power. The entire genetic variability in this species was thus 371 

explained by IBD and Woodlands, both impeding gene flow (Fig. 3A and Appendix K). 372 

In the ground-beetle, the simplified model explained 25.9% of the variance in Fst values 373 

(Table 1). The entire genetic variability was yet here explained by non-LTI features (Fig. 3A; 374 

Appendix K). When considering the first and the second level of the inferred hierarchical genetic 375 

structure, simplified models explained 17.2% and 26.8% of the variance in HGD1 and HGD2, 376 

respectively. In both cases, the D6089 was associated with an increase in genetic distances, 377 
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indicating a consistent barrier effect (U = 0.059 in HGD1 and 0.114 in HGD2). In addition, 378 

Roads (HGD1) and the Gas pipeline (HGD2) were also detected as having negative effects on 379 

gene flow (U = 0.063 and 0.049, respectively). In HGD2, the Motorway did not significantly 380 

contribute to the model predictive power. Overall, explained variance in genetic distances was 381 

accounted for by both LTIs (53.5%) and non-LTIs elements (46.5%; Fig. 3A), with all LTIs being 382 

associated with an increase in genetic distances (Fig. 3B), suggesting a possible cumulative 383 

barrier effect across hierarchical levels. 384 

 385 

3.3. Assessment of infrastructure effects 386 

Overall, 47.9% of the explained variance in genetic distances across all species was due 387 

to LTIs (Fig. 3A), of which 79.6% was associated with an increase in genetic distances, that is, 388 

with a barrier effect (Fig. 3B-C). The only LTI that did not contribute to genetic distances in any 389 

species was the Power line. The D6089 and the Gas pipeline were both systematically associated 390 

with barrier effects, in toads and beetles for the former and in beetles only for the latter. On the 391 

contrary, the Railway was only associated with a corridor effect in snakes. The two last LTIs 392 

showed more nuanced impacts, with corridor effects detected in some species (20.4% of 393 

explained variance by LTIs). While 81% of the overall genetic variability explained by the 394 

Motorway across species corresponded to a barrier effect in snakes, the remaining 19% 395 

corresponded to a reduction in genetic distances in toads (Fig. 3C). It was the opposite in the 396 

case of the Roads, with 60% corresponding to a barrier effect in toads but 40% to a reduction in 397 

genetic distances in snakes (Fig. 3C).  398 

 399 

4. DISCUSSION 400 
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The goal of this study was to assess landscape functional connectivity in four species 401 

occupying a landscape fragmented by multiple LTIs. We were particularly interested in the 402 

potential cumulative or on the contrary the antagonistic effects of six LTIs. We used individual- 403 

and population-based regression analyses along with commonality analyses over restricted 404 

spatial scales to thoroughly evaluate the relative contribution of various landscape predictors to 405 

the variance in both classical and hierarchical genetic distances. As expected, we found that all 406 

ground-dwelling species suffered from the barrier effect of at least one LTI, notably those 407 

carrying vehicles (Roads, D6089 and Motorway) whereas the flying species was not affected by 408 

any LTI. We also identified a possible cumulative barrier effect of roads and D6089 in A. 409 

parallelepipedus, the least mobile species, shaping spatial patterns of gene flow across several 410 

hierarchical levels. Most importantly, we found that LTIs did not only act as barriers to gene flow 411 

but might on the contrary promote gene flow, with some antagonistic effects across species.  412 

Overall, LTIs were found to have a strong influence (either positive or negative) on gene 413 

flow, accounting for 47.9% of the total explained genetic variability across species and genetic 414 

distances. All ground-dwelling species were affected by LTIs, with contributions to the variance 415 

by LTIs ranging from 37% in toads to 100% in snakes, contrary to the flying species M. jurtina 416 

whose genetic variability was only affected by distance and woodlands, as expected from a 417 

previous study (Villemey et al., 2016). Although butterflies have a lower probability to be 418 

impacted by vehicles than ground-dwelling species, previous studies showed that roads and 419 

motorways could hinder crossing events in this species (Polic et al., 2014; Remon et al., 2018)). 420 

A direct Mark-Release-Recapture survey conducted in the same study area notably found that the 421 

motorway was responsible for a six-fold decrease in crossing events when compared to adjacent 422 

habitats (Remon et al., 2018). It is possible that large population sizes in M. jurtina are 423 
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responsible for a temporal inertia in the setting-up of genetic differentiation since the creation of 424 

the motorway in 2004 (Landguth et al., 2010), but this study showed that some butterflies were 425 

able to cross it, thus possibly ensuring sufficient gene exchange across the landscape. Although 426 

we could not ascertain the negative aftermaths of human-induced fragmentation in M. jurtina 427 

from our genetic data, our study highlights the potential benefits of combining landscape 428 

genetics and Mark-Release-Recapture surveys (Cayuela et al., 2018). 429 

As expected, LTIs were mainly associated with a reduction in gene flow, barrier effects 430 

accounting for 79.6% of the variance explained by LTIs across ground-dwelling species. LTIs 431 

carrying vehicles (roads, D6089 and motorway) were more impacting than infrastructures 432 

carrying energy (Gas pipeline and Power line). Roads and D6089 were responsible for most of 433 

inferred barrier effects in this landscape, with negative effects on gene flow in both toads and 434 

beetles. The motorway also accounted for non-negligible amounts of explained genetic 435 

variability but to a lesser extent than roads, only negatively affecting snakes. In contrast, the 436 

contributions of LTIs carrying energy were less important. The gas pipeline negatively affected 437 

gene flow in the ground-beetle only, probably in response to associated breaches in forest cover 438 

(Charrier, 1997), and the power line did not affect any studied species. These results suggest that 439 

conservation measures should primarily focus on infrastructures carrying vehicles rather than on 440 

infrastructures carrying energy (Bartzke et al., 2015), although we acknowledge that some taxa 441 

not considered in this study, for instance birds, might be negatively affected by LTIs such as 442 

power lines (Loss et al., 2015).  443 

Despite these general negative impacts of LTIs on gene flow, we found that species 444 

showed very different responses to the same LTI, which perfectly highlights the importance of 445 

considering functional rather than just structural landscape connectivity in empirical studies 446 
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(Taylor et al., 2006). Two of the six studied LTIs were associated with an increase in genetic 447 

distances in toads, these barrier effects together accounting for 86.4% of genetic variance 448 

explained by LTIs. Roads and D6089 were the main barriers to dispersal in A. obstetricans, 449 

affecting classical (GD) and second-order hierarchical genetic distances (HGD2), respectively. 450 

Garcia-Gonzalez et al. (2012) similarly found that all roads, including small secondary roads, 451 

acted as barriers to gene flow in A. obstetricans in northern Spain. Amphibians are particularly 452 

vulnerable to road kills because of their numerous movements during dispersal but also during 453 

seasonal migrations between breeding water bodies and shelters (Fahrig & Rytwinski, 2009). 454 

Although these results advocate for effective mitigation measures to limit road kills of 455 

amphibians (Beebee, 2013), it is important to keep in mind that other road features such as traffic 456 

noise may also affect amphibians population dynamics (Bee & Swanson, 2007). 457 

In addition to toads, we found that roads also deeply impacted the ground-beetle A. 458 

parallelepipedus across all hierarchical levels a result congruent with Keller et al. (2004). Roads 459 

and D6089 explained the whole genetic variance at the first hierarchical level (HGD1) resulting 460 

in clusters A and B (Fig. 2A). At the second hierarchical level (HGD2), the D6089 (but also the 461 

gas pipeline) was associated with the split of cluster B into two sub-clusters (Fig. 2A) and thus 462 

probably further impacted gene flow. Roads may act as barrier to gene flow because of road kills 463 

but also because ground-beetles may be reluctant to cross roads due to behavioral changes 464 

(Holderegger & Di Giulio, 2010).  465 

Contrary to roads, we found that the motorway and the railway showed limited barrier 466 

effects. The only species that was negatively affected by the motorway was the snake N. 467 

helvetica. We here revealed that half of the explained genetic variability in snakes resulted from 468 

the negative impacts of the motorway. Because it is fenced with fine mesh, snakes might only be 469 
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able to reach the other side by using crossing structures (bridges, underpasses, culverts, etc.). 470 

These crossing structures may yet be seldom used by snakes due to inadequate placement, 471 

architectural design and snakes' behavior (Woltz et al., 2008). Thermoregulatory behavior of 472 

reptiles is probably the main reason why individuals would not use underpasses, as a 50 m-length 473 

underpass would provide inadequate thermal conditions due to the absence of sunlight. In 474 

addition, Baxter-Gilbert et al. (2015) evaluated the effectiveness of different mitigation measures 475 

implemented to reduce reptile road mortality (including underneath culverts) and found that 476 

these structures were seldom used by reptiles. Underpasses may yet be used by other taxa such as 477 

amphibians and insects (Georgii et al., 2011), which may explain why the motorway was only 478 

found as acting as a barrier in a single species.  479 

Our most striking finding is that, instead of acting as barriers, some LTIs might somehow 480 

promote dispersal. This corridor effect accounted for 20.4% of the overall genetic variance 481 

explained by LTIs across species and concerned both vertebrates. We first found that, at the 482 

second level of the hierarchy (that is, at a more local scale), gene flow in toads was promoted by 483 

the motorway. This counter-intuitive genetic pattern could stem from the availability of new 484 

habitats provided by the LTI. Adults and tadpoles of A. obstetricans were indeed detected in 485 

eight out of the ten storm-water retention ponds present along the studied motorway (data not 486 

shown). These ponds may provide favorable breeding habitats, free of predatory fish and 487 

surrounded by sand or gravel, the ideal substrates to build their burrows. Furthermore, the 488 

motorway is crossed by underneath culverts and tracks which are good dispersal corridors for 489 

amphibians (Georgii et al., 2011), especially when they are filled with water. This is not the first 490 

study showing a potential positive effect of a motorway on amphibian gene flow. Prunier et al. 491 

(2014) revealed that a 40-years old motorway was not a barrier for the alpine newt (Ichthyosaura 492 
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alpestris) and could even serve as a longitudinal dispersal corridor when the surrounding 493 

landscape matrix is highly unfavorable. Interestingly, they even found negative relationships 494 

between genetic distances and presence of the motorway, indicating that, as in our study, gene 495 

flow across the motorway was probably enhanced; but because they analyzed their data using 496 

one-tailed Mantel tests, they did not discuss this possibility. These results might yet be 497 

interpreted with caution due to the recent age of the motorway (<15 years old): this genetic 498 

pattern could also stem from ancestral landscape configurations and direct monitoring surveys 499 

are now necessary to confirm that the motorway is indeed not an obstacle for toads.  500 

Despite limited explained variance in snakes, we also identified two LTIs possibly acting 501 

as corridors in this species, Roads and Railway, together accounting for 51.5% of genetic 502 

variance explained by LTIs. Roads are known to be responsible for a high mortality in snakes 503 

(Rosen & Lowe, 1994): they bask on road surfaces to absorb radiant heat but this behavior 504 

increases the probability of collisions and can result in a reduction in gene flow across roads 505 

(Clark et al., 2010). However, we found the exact reverse pattern, with roads associated with a 506 

reduction in genetic distances in N. helvetica. This conflicting result may be explained by an 507 

attractive effect of roads and road verges that provide basking surfaces, reinforced by a limited 508 

traffic volume in our study area. In addition, the distribution of grass snakes being strongly 509 

dependent on wetlands for foraging, water-filled ditches often found alongside secondary roads 510 

may provide rich feeding areas, resulting in a local increase in snake abundance that favors road 511 

crossings and gene flow: a similar explanation was proposed by Johansson et al. (2005) who 512 

found a positive effect of gravel roads and associated ditches in the common frog (Rana arvalis). 513 

The railway was probably as attractive as roads for snakes, which may similarly explain gene 514 

flow enhancement observed in snakes. Railway embankments provide important alternative 515 
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habitats for reptiles with optimal thermal conditions for basking (Borda-de-Água et al., 2017), 516 

especially when traffic density -and associated disturbance- is low, as it is the case here, with 517 

approximately 10 trains/day. Additionally, even active lines can harbor particularly high diversity 518 

in reptile species, notably because human presence is scarce and because reptiles can perceive 519 

vibrations transmitted through the rail tracks and the ballast when a train approaches, allowing 520 

them to reach a shelter before collision (Borda-de-Água et al., 2017). 521 

Although we made our best to ensure optimal detection of the impacts of LTIs on gene flow in 522 

considered species, this study is not without some limitations. Inferring the impact on dispersal 523 

of linear features such as LTIs using genetic data requires a proper spatial sampling scheme, 524 

ideally with many sampling sites located in the direct vicinity of LTIs and few locations left 525 

unsampled (Burgess & Garrick, 2021; Prunier et al., 2013; Richardson et al., 2016). This could 526 

not be achieved in all species, especially in A. parallelepipedus and M. jurtina because of an 527 

uneven spatial distribution of populations within the study area. Furthermore, the total number of 528 

sampled individuals and the number of loci should be high enough to allow correct inferences 529 

(Oyler-McCance et al., 2013): with only 115 genotypes available in N. helvetica and only six 530 

(though highly polymorphic) loci available in M. jurtina, we may have lacked statistical power to 531 

detect the actual influence of some LTIs on gene flow in these two species. Finally, the setting-up 532 

of genetic structures is a process characterized with high temporal inertia, which could somehow 533 

prevent the detection of barrier effects for the most recent LTIs (C. D. Anderson et al., 2010; 534 

Prunier et al., 2014): the railway was more than 150 years old, which seems to be of sufficient 535 

duration for the detection of a putative barrier effect from genetic data (Landguth et al., 2010; 536 

Prunier et al., 2014), but others were not so old (the motorway was for instance less than 15 537 

years old), which may have prevented us from detecting actual barrier effects. Nevertheless, and 538 
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although we were probably not able to detect all LTIs effects, we consider reasonable our main 539 

findings that barrier effects of different LTIs may accumulate to shape spatial patterns of gene 540 

flow in some species (notably in A. parallelepipedus, with a cumulative effect of roads and gas 541 

pipeline) and that some LTIs may have antagonistic effects (i.e., acting a barrier for some species 542 

but somehow promote gene flow in some others).  543 

 544 

5. CONCLUSION 545 

The accumulation of LTIs within landscapes is emerging as an important concern and 546 

local conservation policies are to be fueled by a thorough assessment of landscape functional 547 

connectivity. Although focusing on a single species may help corridor planning (Baguette et al., 548 

2013), we here illustrated how important it is to assess landscape connectivity from a multi-549 

species perspective. Considering the high variability in species response to LTIs, we argue that 550 

considering a single species may lead to counterproductive mitigation measures and that 551 

integrative approaches based on multiple species are to be more systematically considered. This 552 

work must necessarily be carried out on a case-by-case basis, ideally using both genetic and 553 

demographic tools, depending on the species present and the topographic characteristics of the 554 

existing or planned LTIs in the landscape under study. Although functional connectivity directly 555 

underpins the design of green infrastructures and drives biodiversity offsetting measures through 556 

the use of equivalence assessment methods (Boileau et al., 2022), it is the hardest mitigation 557 

currency to assess on the field based on expert opinion: in a context where target-based 558 

mitigation measures are developing (Simmonds et al., 2020), the use of genetic tools to monitor 559 

functional connectivity for a set of targeted species could improve biodiversity conservation 560 

through a better implementation of the mitigation hierarchy and the design of conservation site 561 
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networks (Boileau et al., 2022), especially when considering the management of cumulative 562 

barrier effects (Blakley & Franks, 2021). 563 

As it obviously seems impossible to assess functional connectivity in all existing species 564 

in a given landscape, it is also necessary to determine the extent to which species-specific 565 

mitigation measures can benefit the largest number of species, and, more generally, to investigate 566 

which life-history traits drive the taxonomic-specific response of organisms to the presence of 567 

LTIs. 568 

  569 
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TABLES 

 

Table 1: Outputs of multiple linear regressions and additional parameters from commonality 

analyses (CA) for each species and for each type of data set. DV represents the dependent 

variable: classical genetic distances (GD; calculated either with the Bray-Curtis dissimilarity 

index (bc) or with Fst) and hierarchical genetic distances (HGD1 and HGD2 for first and second 

level of hierarchy, respectively). For each model, the model fit (R2) was estimated from reduced 

scale analyses, with a maximum distance threshold between pairs of individuals or populations 

(Dist.) ranging from 2800 to 18500m. In each model and for each retained predictor, we 

estimated the structure coefficient (rs), the beta weight (β), as well as unique (U), common (C) 

and total (T) contributions. The relative contribution of each predictor (% of R²) was computed 

as U/R². Significance of a predictor's contribution to the dependent variable was estimated using 

confidence intervals (CI-inf and CI-sup). A CI that included 0 was considered as a non-

informative predictor (indicated in italic). The putative effect of significant LTI predictors on 

gene flow (Barrier or Corridor) is also provided. Note that results in A. obstetricans were 

obtained following a specific Jackknife procedure (see Appendix A for details).
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Species DV Dist. (m) R² Predictor rs β CI-inf CI-sup U C T % of R² Effect 

A. obstetricans GD(bc) 3300 3.9% Urban 0.336 0.070 0.008 0.129 0.005 0.000 0.005 13.2  
    Grassland 0.476 0.073 0.021 0.128 0.005 0.004 0.010 13.3  
    Roads 0.758 0.092 0.040 0.145 0.006 0.016 0.022 16.9 Barrier 
    IBD 0.714 0.081 0.039 0.120 0.005 0.015 0.019 12.1  
 HGD1 3300 1.5% Urban 0.819 0.037 0.012 0.064 0.001 0.000 0.001 79.2  
    IBD 0.364 0.019 0.000 0.041 0.000 0.000 0.000 29.4  
 HGD2 5700 6.0% Motorway -0.358 -0.084 -0.106 -0.060 0.011 0.002 0.012 11.9 Corridor 
    D6089 0.737 0.187 0.158 0.215 0.046 -0.002 0.044 58.6 Barrier 
    Urban 0.557 0.133 0.085 0.178 0.031 0.002 0.033 29.7  

N. helvetica  GD(bc) 2800 4.2% Roads -0.109 -0.125 -0.193 -0.062 0.015 -0.003 0.012 35.4 Corridor 

N. helvetica 
M. jurtina 

   Motorway 0.125 0.148 0.078 0.221 0.021 -0.005 0.016 50.8 Barrier 
   Railway -0.106 -0.088 -0.155 -0.022 0.008 0.004 0.011 18.6 Corridor 

GD(Fst) 5500 19.9% IBD 0.209 0.264 0.001 0.490 0.066 -0.023 0.044 33.3  
    Woodlands 0.306 0.315 0.077 0.519 0.089 0.004 0.093 44.8  
    Power line -0.266 -0.180 -0.388 0.046 0.030 0.040 0.071 15.3  

A. parallelepipedus GD(Fst) 6500 25.9% Altitude 0.103 0.121 -0.023 0.251 0.015 -0.004 0.011 5.6  
    Grasslands 0.494 0.498 0.372 0.610 0.248 -0.004 0.244 95.9  
 HGD1 18500 17.2% Roads 0.337 0.262 0.170 0.350 0.063 0.051 0.114 36.5 Barrier 
    D6089 0.331 0.254 0.159 0.338 0.059 0.051 0.110 34.1 Barrier 
 HGD2 4500 26.8% Altitude 0.230 0.223 0.056 0.397 0.049 0.004 0.053 18.3  
    D6089 0.393 0.350 0.184 0.500 0.114 0.040 0.154 42.7 Barrier 
    Motorway -0.163 -0.114 -0.273 0.041 0.012 0.015 0.027 4.5  
    Gas pipeline 0.268 0.225 0.070 0.368 0.049 0.022 0.071 18.4 Barrier 
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FIGURES 

 

Figure 1: Study area in southwestern France and sampling locations of Natrix helvetica (115 

individuals) and Maniola jurtina (21 populations of about 30 individuals each). For these two 

species, no genetic structure was identified (see result section). 
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Figure 2: Left panels: STRUCTURE outputs for A. parallelepipedus (30 populations of about 30 

individuals each; panel A) and A. obstetricans (358 individuals in 56 sampling locations; first 

hierarchical level in panel B, second hierarchical level on panel C) plotted over the study area. 

Right panels: hierarchical splits of inferred clusters from the first to the second hierarchical level. 

Each box represents a cluster, with n the corresponding number of assigned samples. The number 

of cross-assigned samples at each hierarchical level (Q-values < 0.6) is also indicated. 
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Figure 3: Stacked barplots of the averaged relative contributions of various predictors to the 

explained genetic variance. Panel A: For each species and for all species combined, averaged 

relative contributions of LTIs (all infrastructures combined) versus non-LTI predictors. Panel B: 

For each species (except M. jurtina) and for all species combined, averaged relative 

contributions of LTIs associated with an increase (barrier effect) versus a decrease (corridor 

effect) in genetic distances. Panel C: For each LTI (except the power line) and for all LTIs 

combined, averaged relative contributions of LTIs associated with an increase (barrier effect) 

versus a decrease (corridor effect) in genetic distances. 
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A. Sampling scheme and specific analytical framework in Alytes obstetricans 

 

 A total of 434 individuals were sampled across 56 locations, with a highly skewed spatial 

distribution of genotypes: a maximum of three samples were collected in most locations except in 

nine locations where up to 50 samples could be collected. From these 434 individuals, 76 were 

discarded as siblings (see Appendix C). The remaining 358 genotypes were used to compute BC 

genetic distances and HGD hierarchical genetic distances following STRUCTURE analyses, as 

explained in main text. However, because subsequent statistical analyses might be flawed by the 

overrepresentation of some heavily sampled locations compared to locations with a maximum of 

three genotypes, we used a Jackknife subsampling procedure: we created 1000 subsets from the 

358 original genotypes (without replacement) so as to only retain a maximum of three genotypes 

per location in each subset. The statistical analysis described in the main text was applied to each 

subset to produce a specific Jackknife distribution for each parameter of interest (beta weights, 

commonalities, etc.). Final estimates (with 95% confidence intervals) were calculated as the mean 

(along with the 2.5% and 97.5% quantiles) of each distribution. By doing so, we exploited all 

available genetic data but limited any possible bias stemming from the over-representation of some 

sampled locations. 
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B. Laboratory procedures and microsatellite markers 

 

 For all species, we used a Qiagen Type-it Microsatellite kit. We extracted total DNA from 

insect legs, scales and swabs using the DNeasy Blood and Tissue kit (Qiagen, Valencia, CA). 

Before enzymatic digestion, each insect leg and scale was cut in 4-6 pieces to facilitate DNA 

extraction. Buccal swabs were used as is. For Natrix helvetica and Alytes obstetricans, we 

amplified 13 (Pokrant et al. 2016) and 14 (Tobler et al. 2013, Maia-Carvalho et al. 2014) 

polymorphic microsatellite loci, respectively. For both species, loci were amplified in 10 µl 

reaction volumes containing 2 µl multiplex PCR Master Mix, 1.2 to 1.6 µl of primer mix (between 

0.13 and 0.25 µM of each primer), 5.4 to 5.8 µl of purified water and 1 µl of template DNA (10-

20 ng µl-1). For Maniola jurtina, we amplified 15 polymorphic microsatellite loci (Richard et al. 

2015) in three Multiplexes, in 10 µl reaction volumes containing 2 µl multiplex PCR Master Mix, 

0.7 µl of primer mix (between 0.03 and 0.08 µM of each primer), 4.3 µl of purified water and 3 µl 

of template DNA (1-10 ng µl-1). For Abax parallelepipedus, we amplified 14 polymorphic 

microsatellite loci (Marcus et al. 2013) in three Multiplexes, in 5 µl reaction volumes containing 

1 µl multiplex PCR Master Mix, 0.7 µl of primer mix (between 0.04 and 0.11 µM of each primer), 

2.3 µl of purified water and 1 µl of template DNA (approx. 10 ng µl-1).    

 Polymerase Chain Reaction (PCR) conditions were set on an Applied Biosystems thermal 

cycler. For the two vertebrate species, conditions were set as follows: initial denaturation 10 min 

at 95°C; 30 cycles of 30 s at 95°C, 90 s at 51 to 60°C (depending on the multiplex) and 30 s at 

72°C; final elongation of 5 min at 72°C. For the two insect species, conditions were set as follows: 

initial denaturation 10 min at 94°C; 40 cycles of 30 s at 94°C, 90 s (for the 10 first) or 30 s (for the 

30 following) at 61°C (A. parallelepipedus) or 56°C (M. jurtina) and 30 s at 72°C; final elongation 

of 5 min at 72°C. All PCR products were ten times diluted and were run on an ABI 3730 DNA 

Analyser (Applied Biosystems) with the GeneScan-600 LIZ size standard. Genotyping was 

performed with GENEMAPPER 5.0 (Applied Biosystems) and all peaks were manually 

confirmed. 

 In the A. obstetricans data set, there was no evidence of linkage disequilibrium among loci. 

We found evidence of null alleles for locus Aly7. Accordingly, we retained 13 loci for subsequent 

analyses (Aly28, Aly3, Aly4, Aly17, Aly19, Aly20, Aly23, Aly24, Aly25, Aobst14, Aobst15, 

Aobst16 and Aobst17). 

 In the N. helvetica data set, two loci could not be amplified (Nsµ3 and 3TS) either in multiplex 

or in standalone PCR. There was no evidence of null alleles, but we found evidence of linkage 

disequilibrium between loci Natnat05 and µNt8new and between loci Natnat05 and TbuA09. 

Therefore, we only retained 10 loci for subsequent analysis (Natnat09, µNt8new, µNt3, µNt7, 

µt06, Natnat11, Eobµ1, Eobµ13, TbuA09 and 30). 

 In the M. jurtina data set, the locus Mj2410 was discarded as it showed sex linkage (Richard 

et al. 2015, Villemey et al. 2016). As Villemey et al. (2016), we found evidence of frequent null 

alleles for loci: Mj5522, Mj5287, Mj5647, Mj3956, Mj5563, Mj0272, Mj0283 and Mj3637. Thus, 

we only retained six loci for subsequent analysis (Mj0008, Mj7132, Mj0247, Mj7232, Mj4870 and 

Mj5331). 

 In the A. parallelepipedus data set, there was no evidence of linkage disequilibrium among 

loci. We found evidence of null alleles for loci: apar14, apar44, apar46 and apar50. Then, we 

retained 10 loci for subsequent analysis (apar20, apar50, apar27, apar34, apar32, apar12, apar23, 

apar25, apar02, apar46, apar05, apar44, apar14, apar06). 
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The following tables describe the specificity of the microsatellite markers tested for the four 

species followed in this study. Gray colours represent markers that were not used in the landscape 

genetic analyses either because they could not be amplified, showed sex-linkage, presence of null 

alleles or linkage disequilibrium. 
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C. Sibship reconstruction 

 

 We used COLONY2 (Jones and Wang 2010) to identify full-sib and parent-offspring groups 

among our individual-based data sets (N. Helvetica; n= 116) and (A. obstetricans; n = 434, see 

Appendix A). We used the full-likelihood approach based on the individual multilocus genotypes. 

For both species, we assumed that males and females were polygamous (for the snake, see Meister 

at al. 2012a). All individuals were considered as potential offspring and no a priori candidate 

parental genotype was defined. Allele frequencies were determined directly from genetic datasets. 

We ran three independent long runs with various seed numbers to test for congruence among 

results. Only relationships with an associated inclusion probability higher than 95% were 

considered as significant. In A. obstetricans, we identified 67 different groups (composed of full-

sib and/or parent-offspring dyads; 2 to 4 individuals per group). All groups were clustered within 

the same location (suggesting actual siblings), at the exceptions of two dyads, whose members 

were split in different locations and distant from about 4 km and 10 km, respectively (suggesting 

possible misclassification in these two cases). In N. Helvetica, we identified one full-sib dyad, 

corresponding to the shed skin of an already sampled individual. We randomly selected one 

genotype from each group of related individuals, resulting in the removal of 76 genotypes in A. 

obstetricans and one genotype in N. helvetica.  
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D. STRUCTURE outputs 

 

For each species and each hierarchical level (if any), the following figures provide plots of 

individual ancestry Q-values. Each bar stands for an individual and thick vertical lines delineate 

different sampling locations.  

In A. obstetricans, the uppermost hierarchical level allowed identifying two main clusters 

A and B. Cluster A was further split into two subclusters A1 and A2. However, these subclusters 

could not be split further, since we failed to achieve correct convergence criteria for the 

STRUCTURE algorithm despite up to 2 million MCMC iterations (large fluctuations of the α 

parameter along runs). Cluster B was further split into five subclusters B1 to B5. Lower 

hierarchical levels were not explored since subclusters comprised less than 50 individuals each. 
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In A. parallelepipedus, the uppermost hierarchical level allowed identifying two main 

clusters A and B. Cluster A could not be split further, since all individuals had the same probability 

of assignment to any subcluster (illustration for K=2). Cluster B was further split into two 
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subclusters B1 and B2. These subclusters could not be split further, since all individuals had the 

same probability of assignment to any subcluster (illustrations for K=2). 

We were finally unable to detect any genetic structure in M. jurtina or N. helvetica: 

whatever the number of clusters K, all individuals had the same probability of assignment to each 

cluster (illustrations for K=2). 
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E. Landscape features defining the six main retained landscape  

 

• Water: Stagnant water; Streams; Ditches; Rivers 

• Crops: Intensive monocultures; Gardens; Orchards; Vineyards; Vegetable gardens or 

horticultures 

• Woodlands: Recent logged forests; Coniferous forests; Decideous forests; Riparian forests; 

Mixed woodlands; Heathlands; Hedgerows; Tree plantations; Bushlands 

• Grasslands: Grass stripes; Forest clearings; Openings; Grazed pastures; Dry grasslands; 

Hayed meadows; Meadows; Trails and paths; Rocky lands; Abandoned arable 

lands 

• Urban: Agricultural buildings; Residential Buildings; Waste disposals; Electric pylons; 

Water tanks; Artificial gardens; Domestic gardens; Cemeteries; Sport 

equipment such football fields; Surroundings of agricultural buildings; Camp 

sites; Car parks; Greenhouses; Open cast mines; Stone quarry; Industrial sites; 

Urban paved areas; Windmills 

• Roads:  Gravelled roads; Paved roads 
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F. Spatial scale of analyses 

 

The spatial scale retained in landscape genetic analyses can deeply influence the conclusions 

of studies (Keller et al. 2013, Schregel et al. 2018). The local influence of landscape elements on 

genetic distances can remain unnoticed if spatial scale retained is wide in comparison to dispersal 

capacities of individuals (Anderson et al. 2010). Accordingly, we did not use all possible pairs of 

populations or individuals in our data sets. For each dataset, we retained a subset of pairwise data 

by defining a maximum Euclidean distance between pairs, following Cayuela et al. (2019). The 

maximum Euclidean distance was selected as the neighboring distance maximizing the R2 of our 

full model including all predictors in a classical multiple linear regression. This retained distance 

was higher than the minimum distance in a neighboring graph which ensured that no individual 

was excluded from the network (Jombart et al. 2008). It was estimated using Gabriel graphs with 

the “adegenet” package (Jombart 2008) in R 3.3.2 (R Core Team, 2015). Subsequent analyses were 

only run with pairwise data associated with Euclidean distances lower than the computed 

maximum neighboring distance.  

In the four data sets, the minimum neighboring distances detected with the Gabriel graphs were 

2400 m, 2700 m, 5100 m and 4500 m for the species A. obstetricans, N. helvetica, M. jurtina and 

A. parallelepipedus, respectively. In the A. obstetricans data set (n = 358 individuals), the spatial 

scales maximizing the R2 between pairs were 3300 m, 3300 m and 5700 m for the Bray-Curtis 

genetic distance, HGD1 and HGD2, respectively. In the N. helvetica data set, the spatial scale 

maximizing the R2 was 2800 m. In the M. jurtina data set, the spatial scale maximizing the R2 was 

5500 m. In the A. parallelepipedus data set, the spatial scales maximizing the R2 were 6500 m, 

18500 m and 4500 m for the Fst genetic distance, HGD1 and HGD2, respectively.   

The following figure provides an illustration of the approach for A. obstetricans. The inferred 

minimum neighboring graph is at top right of the figure. For each measure of genetic distances, 

the left panel is the plot of R² with increasing spatial scales (Euclidean distance) indicating with a 

dashed line the optimal spatial scale of analysis (i.e., maximizing R²); the right panel represents 

the corresponding retained neighboring network. 
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G. Commonality analyses 

 

In commonality analyses, the effect of each predictor can be decomposed into a unique (U) 

and common (C; shared with other predictors) effect. For a given predictor, the sum of unique and 

common effects corresponds to the total contribution (T), equal to its squared zero-order 

correlation with the dependent variable (U + C = T = r2). Therefore, commonality analyss 

represents a good opportunity to assess the reliability of predictors to explain the dependent 

variable face to collinearity. The magnitude of suppression among predictors is indicated by 

negative commonalities. Negative commonalities represent the amount of predictive power that 

would be lost by other predictors if the suppressor variable was not included in the regression 

model. 

 Accordingly, we can distinguish three specific types of suppressors (Conger 1974). (i) A 

classical suppressor corresponds to a predictor whose unique contribution is totally 

counterbalanced by its negative common contribution (U + C = 0). (ii) A reciprocal suppressor, 

also described as a partial suppressor, is a predictor with a negative common effect but that does 

not counterbalance its unique contribution to the variance in the dependent variable (T = U + C > 

0). Finally, (iii) a cross-over suppressor is similar to a partial suppressor but with reversal sign. 

Cross-over suppressors are detected by a sign inversion between the structure coefficients rs and 

the beta weights (Prunier et al. 2017).  

We performed multiple linear regressions and commonality analyses using packages ecodist 

(Goslee and Urban, 2007) and yhat (Nimon et al. 2008) in R 3.3.2 (R Core Team, 2015). To remove 

classical suppressors, we discarded predictors presenting low univariate squared correlation 

against the genetic dependent variables (r2 lower than 0.01). Low correlated predictors are likely 

to act as classical suppressors leading to the distortion of regression coefficients (Prunier et al. 

2015). When we discarded those non-informative predictors, we ended up with simplified models 

containing a reduced number of predictors which were likely to explain the variance in the genetic 

dependent variables. Predictors that were identified as cross-over (CO) and reciprocal suppressors 

were discarded from our model and subsequent models were ran without these suppressors until 

no more suppressors could reasonably be discarded from the model (that is, we kept reciprocal 

suppressors showing a non-negligible unique contribution). We also removed predictors with 

synergistic (S) association with other predictors, which have a unique contribution to the dependent 

variable equal to zero but presenting synergistic association with other predictors (C > 0). 
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H. Intermediate steps of commonality analyses on vectors 

 

To explain the dependent variable based on the Bray-Curtis genetic distance in A. obstetricans, 

the predictors with a squared correlation (r2) with the dependent variable higher than 0.01 were 

Isolation-by-Distance (IBD), Roads, Grasslands, Urban and Power line. Among these predictors, 

Power line acted as a cross-over (CO) suppressor and was discarded from subsequent analysis. To 

explain the first level of hierarchical genetic distances (HGD1) in A. obstetricans, the predictors 

with a r2 higher than 0.01 were IBD and Urban. None of them acting as a suppressor, they were 

both kept for subsequent analysis. To explain the second level of hierarchical genetic distances 

(HGD2) in A. obstetricans, ten predictors showed a r2 higher than 0.01. IBD acted as a cross-over 

suppressor, both Railway and Crops acted as reciprocal suppressors and both elevation and 

Grassland showed no significant contribution to the dependent variable across Jackknife subsets 

(null lower bound of the 95% confidence interval about U):  all these predictors were discarded 

from subsequent analyses. 

In the N. helvetica data set, only three predictors had a r2 higher than 0.01: Roads, Motorway 

and Railway. There was no suppressor among these three predictors and all were used in the final 

model. 

In M. jurtina, five predictors had a r2 higher than 0.01: IBD, Woodlands, Grasslands, D6089 

and Power line. Grasslands was a cross-over suppressor and the roads D6089 was a partial 

suppressor. These two predictors were discarded from subsequent analysis resulting in a final 

model with three predictors: IBD, Woodlands and Power line. 

To explain Fst in A. parallelepipedus, six predictors had a r2 higher than 0.01: Altitude, 

Grasslands, Water, Urban, Roads and Motorway. Water, Urban, Roads and Motorway were cross-

over suppressors. All were discarded from subsequent analysis. Only two predictors remained in 

the final model: Altitude and Grasslands. To explain the first level of hierarchical genetic distances 

(HGD1) in A. parallelepipedus, we retained the predictors: Grasslands, Water, Crops, Urban, 

Roads and D6089 (r2 > 0.01). Grasslands, Crops and Urban were cross-over suppressors and Water 

was a suppressor with synergistic association with other predictors. Therefore, we retained only 

Roads and D6089 to explain the dependent variable in the final data set. To explain the second 

level of hierarchical genetic distances (HGD2) in A. parallelepipedus, we retained the predictors: 

Altitude, Roads, D6089, Motorway and Gas pipeline (r2 > 0.01). The predictor Roads was a 

suppressor with synergistic association with other predictors and was discarded from subsequent 

analysis. 

The following figures provide the runs of identification of unnecessary predictors for each 

species and each genetic dependent variable DV (GD: genetic distance either calculated with the 

Bray-Curtis (bc) dissimilarity index for individual-based method or Fst for population-based 

method; HGD1 and HGD2 for hierarchical genetic distance based on first and second level of 

STRUCTURE outputs, respectively). Distance stands for the spatial scale retained in our analyses 

(Appendix F). Results of the different runs of multiple linear regressions (predictors, structure 

coefficient rs and standardized coefficient β), in addition to parameters derived from CA: unique 

(U), common (C) and total (T) contributions of predictors to the variance in the genetic dependent 
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variable. The rationale for withdrawal of predictors (Ra) is the following: CO: cross-over 

suppression; S: synergistic association with other predictors; PS: partial suppression (or reciprocal 

suppression); NC: no contribution to the dependent variable (as inferred from the null lower bound 

of the Jackknife 95% intervals about U in the A. obstetricans; see Appendix A for details). All 

predictors (IBD: isolation by distance; D6089: a large country road; Urban: urban areas) were 

coded as resistance. In bold: parameters allowing the identification of unnecessary predictors and 

suppressors. Note that situations of classical suppression were avoided by discarding any predictor 

with a squared zero-order correlation < 0.01. 
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I. Spatial principal component analysis (sPCA) in Alytes obstetricans 

 

To further explore the genetic structure in Alytes obstetricans, we ran sPCA (Jombart et al., 

2008) using the whole genetic dataset (n = 358 individuals) and the minimum neighboring graph 

as shown in Appendix F. This method seeks principal components that optimize the variance of 

individual allelic frequencies while taking spatial autocorrelation of data into account. It provides 

maps of individual sPCA scores (white and black squares), allowing a visual assessment of spatial 

genetic structures.  

Scores of individuals along the first sPCA axis (panel A in figure below) distinguished a group 

of individuals located in the center of the study area (in black), surrounded by a second group in 

the eastern, southern and western part of the study area (in white): this pattern evokes what was 

found at the second hierarchical level between clusters A1 and A2 using STRUCTURE outputs 

(Figure 2C in main text). Scores of individuals along the second sPCA axis (panel B in figure 

below) further suggest a somehow complex spatial pattern, again in accordance with overall 

STRUCTURE outputs in this species (Figure 2B and C in main text). 
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J. Correlations among final predictors 

 

Matrices of Pearson's correlation coefficients among final predictors depending on the 

genetic dependent variables. The genetic dependent variables are genetic distances (GD) based on 

the Bray-Curtis dissimilarity index (bc), Fst or hierarchical genetic distances at the first and second 

levels of STRUCTURE outputs (HGD1 and HGD2). The variance inflation factors (VIF) are 

presented for each predictor. 

 

 
 



64 

 

K. Supplementary results and discussion 

 

Alytes obstetricans: 

With the classical genetic distances, natural predictors (IBD, Grasslands and Urban) explained 

most of the dependent variable's variance (63% of the averaged unique contributions).  

At the first level of hierarchical genetic distances (HGD1), Urban was the only significant 

predictor, but the model explained a very limited amount of variance (1.5%), suggesting that the 

observed spatial pattern at this hierarchical level stems from other non-considered (possibly 

historical) processes. 

Nevertheless, Urban was also found as a significant contributor to the genetic variance at the 

second hierarchical level (HGD2), suggesting its role in shaping dispersal patterns in this species, 

along the D6089 (hindering gene flow) and the motorway (enhancing it).  

 

Maniola jurtina: 

In this species, woodlands were associated with an increase of genetic distances indicating a 

barrier effect (positive beta values) and explained most of the variance (U = 0.089). The rest of the 

explained variance was due to isolation by distance (IBD, U = 0.066). Therefore, the entire 

variability detected in the butterfly genetic distances was explained by natural predictors. 

 

Abax parallelepipedus: 

With the classical genetic distances, two final predictors explained the dependent variable: 

Altitude and Grasslands. Altitude did not significantly explain genetic distances (95% confidence 

intervals included 0). Therefore the variance explained by our model was only due to grasslands 

associated to an increase of genetic distances indicating a strong barrier effect (U = 0.248). 

When using the first level of hierarchical genetic distance (HGD1), the linear regression 

explained 17% of the dependent variable's variance. HGD1 was fully explained by predictors 

associated with an increase of genetic distances in the ground-beetle (positive beta values): the 

secondary road network (U = 0.063) and the country road D6089 (U = 0.059). 

When using the second level of hierarchical genetic distance (HGD2), the linear regression 

explained 27% of the dependent variable's variance. Four predictors remained in the final model: 

the altitude, the road D6089, the motorway and the gas pipeline. The 95% confidence interval 

around the beta value of the motorway included 0 indicating that the motorway was not 

significantly explaining HGD2. The three remaining predictors were all associated with an 

increase of genetic distances (positive beta values). The road D6089 was explaining the highest 

part of the variability (U = 0.114) suggesting a strong barrier effect of this infrastructure on gene 

flow. The gas pipeline and Altitude had both a unique contribution to the dependent variable of 

0.049. 

 

Infrastructures were not the only landscape elements affecting gene flow in the studied 

species. Half of the explained genetic variability was, in fact, due to non-LTIs features (Fig. 3A in 

main text). The non-LTIs features influencing gene flow in A. obstetricans were isolation by 
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distance (IBD), grasslands and urban areas (Table 1). We were able to detect IBD in this study area 

that was not detected for the same species in Spain (Garcia-Gonzalez et al. 2012) probably because 

they used mitochondrial DNA instead of microsatellites which are less variable at small 

geographical scales (Kohn et al. 2006). The negative influence of grasslands on toad dispersal is 

difficult to interpret, and may stem from the specific arrangement of habitats in the study area. On 

the contrary, urban areas were found as responsible for an increase in all considered genetic 

distances (Bc, HGD1 and HGD2), suggesting their important role in shaping spatial genetic 

patterns in this species: urban areas are indeed inappropriate habitats for amphibians, limiting gene 

flow in many species (Goldberg et al. 2010, VanBuskirk 2012).  

In our study area, the genetic structure of N. helvetica was weak. The software STRUCTURE 

detected only one cluster (interpreted as a single population) indicating that gene flow through this 

landscape was important. This result may explain the low proportion of the genetic variance 

explained by landscape features (4% of the variance). In a comparable landscape in Switzerland, 

(Meister et al. 2010) also found that grass snakes belong to a single population. In this study, we 

found that N. helvetica gene flow was affecting only by infrastructures (roads, motorway A89 and 

the railway). In seems that, at the local scale, grass snake dispersal is not affected by intensively 

used landscape features such as crops or urban areas (Wisler et al. 2008, Meister et al. 2010, 

Meister et al. 2012b). Isolation by distance explains the genetic variance at the regional level 

(Meister et al. 2012) and genetic structuring can probably only be detected at large spatial scales 

(Kindler et al. 2013, Pokrant et al. 2016, Kindler et al. 2017, Kindler et al. 2018).   

Compared to a previous individual-based study that explained less than 5 % of the genetic 

variance in three sites across France in the butterfly M. jurtina (Villemey et al. 2016), we were 

able to explain about 20% of the variance when using a population-based method and a restricted 

spatial scale (maximum neighboring distance = 5500 m). STRUCTURE was not able to find any 

genetic structure in the data, probably because of high abundance, low specialization and great 

dispersal capacity in this butterfly (Villemey et al. 2016). Interestingly, we were able to detect an 

isolation-by-distance effect. This IBD effect was not detected in (Villemey et al. 2016) with 

pairwise distances up to 60 km apart. We found that woodlands were impeding gene flow in M. 

jurtina, a result similar to (Villemey et al. 2016). The absence of sunlight and the dense vegetation 

may limit the movements through woodlands. 

Unlike Marcus et al. (2015), we found a strong genetic structure in the ground-beetle A. 

parallelepipedus within the studied landscape. The explained proportion of the classical Fst 

genetic distance was due to grasslands acting as barrier to gene flow. This result is linked to 

previous studies showing that this species intentionally avoids open fields such as grasslands 

(Charrier et al. 1997, Petit et al. 1998). This encourages the maintenance of hedges in agricultural 

environments to favor landscape connectivity between woodland patches (Charrier et al. 1997, 

Petit et al. 1998, Fournier and Loreau, 1999). Altitude affected gene flow at the second hierarchical 

level (HGD2), but its effect was modest (Table 1 in main text). In any case, the fragmentation of 

woodlands due to land conversion, roads or other kind of LTIs could lead to strong isolation of 

ground-beetles populations. Population abundance are high in this species (Loreau and Wolf, 1993, 
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Keller et al. 2004) but its dispersal capacity is very limited (Charrier et al. 1997, Brouwers and 

Newton, 2009). Therefore, populations which are not linked by dispersal may suffer from genetic 

isolation (Fahrig and Rytwinski, 2009, Beyer et al. 2016). 



67 

 

L. References for appendices 

 

1. Anderson, C. D., Epperson, B. K., Fortin, M. J., Holderegger, R., James, P. M. A., 

Rosenberg, M.  S., Scribner, K. T. and Spear, S. (2010). Considering spatial and temporal 

scale in landscape- genetic studies of gene flow, Molecular Ecology 19(17): 3565–3575. 

doi:10.1111/j.1365- 94X.2010.04757.x. 

2. Brouwers, N. C. and Newton, A. C. (2009). Movement rates of woodland invertebrates : A  

systematic review of empirical evidence, Insect Conservation and Diversity 2(1) : 10–22.  

doi :10.1111/j.1752-4598.2008.00041.x. 

3. Beyer, H. L., Gurarie, E., Börger, L., Panzacchi, M., Basille, M., Herfindal, I., Van Moorter, 

B., R.  Lele, S. and Matthiopoulos, J. (2016). ’You shall not pass !’ : Quantifying barrier  

permeability and proximity avoidance by animals, Journal of Animal Ecology 85(1) : 43–

53. 

4. Brühl, C. A., Schmidt, T., Pieper, S. and Alscher, A. (2013). Terrestrial pesticide exposure 

of  amphibians : An underestimated cause of global decline ?, Scientific Reports 3 : 1135. 

doi : 10.1038/srep01135. 

5. Charrier, S., Petit, S. and Burel, F. (1997). Movements of Abax parallelepipedus ( 

Coleoptera,  Carabidae) in woody habitats of a hedgerow network landscape : a radio-

tracing study,  Agriculture, Ecosystems and Environment 61 : 133–144. 

6. Cayuela, H., Boualit, L. and Laporte, M. (2019). Kin-dependent dispersal influences 

relatedness and  genetic structuring in a lek system, (January). Doi:10.1101/518829. 

7. Conger, A. J. (1974). Increasingly Dichotomy Whereby Frequently, Educational and 

Psychological  Measurement 34 : 35–46. 

8. Fahrig, L. and Rytwinski, T. (2009). Effects of roads on animal abundance : an empirical 

review and  synthesis, Ecology and Society 14(1) : 21. 

9. Fournier, E. and Loreau, M. (1999). Effects of newly planted hedges on ground-beetle 

diversity  (Coleoptera, Carabidae) in an agricultural landscape, Ecography 22(1) : 87–97. 

doi : 10.1111/j.1600-0587.1999.tb00457.x. 

10. Garcia-Gonzalez, C., Campo, D., Pola, I. G. and Garcia-Vazquez, E. (2012). Rural road 

networks as  barriers to gene flow for amphibians : Species-dependent mitigation by traffic 

calming,  Landscape and Urban Planning 104(2) : 171–180. doi 

:10.1016/j.landurbplan.2011.10.012. 

11. Goldberg, C. S. and Waits, L. P. (2010). Comparative landscape genetics of two pond 

breeding  amphibian species in a highly modified agricultural landscape, Molecular 

Ecology 19(17) :  3650–3663. doi :10.1111/j.1365-294X.2010.04673.x. 

12. Goslee, S. C. and Urban, D. L. (2007). The ecodist package for dissimilarity-based analysis 

of ecological data, Journal Of Statistical Software 22(7) : 1–19.  

13. Jones, O. R. and Wang, J. (2010). COLONY: A program for parentage and sibship inference 

from  multilocus genotype data, Molecular Ecology Resources 10(3): 551–555.  

doi:10.1111/j.1755-0998.2009.02787.x. 



68 

 

14. Jombart, T. (2008). Adegenet : A R package for the multivariate analysis of genetic 

markers,  Bioinformatics 24(11) : 1403–1405. doi :10.1093/bioinformatics/btn129. 

15. Jombart, T., Devillard, S., a B Dufour and Pontier, D. (2008). Revealing cryptic spatial 

patterns in  genetic variability by a new multivariate method., Heredity 101 : 92–103. doi 

: 10.1038/hdy.2008.34. 

16. Keller, D., Holderegger, R. and Van Strien, M. J. (2013). Spatial scale affects landscape 

genetic  analysis of a wetland grasshopper, Molecular Ecology 22(9): 2467–2482.  

doi:10.1111/mec.12265. 

17. Keller, I., Nentwig, W. and Largiadèr, C. R. (2004). Recent habitat fragmentation due to 

roads can  lead to significant genetic differentiation in an abundant flightless ground beetle, 

Molecular  Ecology 13(10) : 2983–2994. 

18. Kindler, C., Böhme, W., Corti, C., Gvoždík, V., Jablonski, D., Jandzik, D., Metallinou,  M., 

Široký, P. and Fritz, U. (2013). Mitochondrial phylogeography, contact zones and  

taxonomy of grass snakes (Natrix natrix, N. megalocephala), Zoologica Scripta 42(5) : 

458– 472. doi :10.1111/zsc.12018. 

19. Kindler, C., Chèvre, M., Ursenbacher, S., Böhme, W., Hille, A., Jablonski, D., Vamberger, 

M. and  Fritz, U. (2017). Hybridization patterns in two contact zones of grass snakes reveal 

a new  Central European snake species, Scientific Reports 7(1) : 7378. doi 

:10.1038/s41598-017- 07847-9. 

20. Kindler, C., de Pous, P., Carranza, S., Beddek, M., Geniez, P. and Fritz, U. (2018). 

Phylogeography  of the Ibero-Maghrebian red-eyed grass snake (Natrix astreptophora), 

Organisms Diversity  and Evolution 18(1) : 143–150. doi :10.1007/s13127-017-0354-2. 

21. Kohn, M. H., Murphy, W. J., Ostrander, E. A. and Wayne, R. K. (2006). Genomics and 

conservation  genetics, Trends in Ecology and Evolution 21(11) : 629–637. doi :  

0.1016/j.tree.2006.08.001. 

22. Lenhardt, P. P., Brühl, C. A., Leeb, C. and Theissinger, K. (2017). Amphibian population 

genetics in  agricultural landscapes : does viniculture drive the population structuring of 

the European  common frog ( Rana temporaria ) ?, PeerJ 5 : e3520. doi :10.7717/peerj.3520. 

23. Loreau, M. and Nolf, C. L. (1993). Occupation of space by the carabid beetle Abax ater, 

Acta  Oecologica 14(2) : 247–258. 

24. Maia-Carvalho, B., Gonçalves, H., Martı́nez-Solano, I., Gutiérrez-Rodrı́guez, J., Lopes, S., 

Ferrand,  N. and Sequeira, F. (2014). Intraspecific genetic variation in the common midwife 

toad  (Alytes obstetricans): subspecies assignment using mitochondrial and microsatellite  

markers, Journal of Zoological Systematics and Evolutionary Research 52(2): 170–175.  

doi:10.1111/jzs.12048. 

25. Marcus, T., Assmann, T., Durka, W. and Drees, C. (2013). A suite of multiplexed 

microsatellite loci for the ground beetle Abax parallelepipedus (Piller and Mitterpacher, 

1783) (Coleoptera,  Carabidae), Conservation Genetics Resources 5(4): 1151–1156. 

doi:10.1007/s12686-013- 9985-6. 



69 

 

26. Marcus, T., Boch, S., Durka, W., Fischer, M., Gossner, M. M., Müller, J., Schöning, I., 

Weisser, W.  W., Drees, C. and Assmann, T. (2015). Living in Heterogeneous Woodlands – 

Are Habitat  Continuity or Quality Drivers of Genetic Variability in a Flightless Ground 

Beetle ?, PLoS  ONE 10(12) : e0144217. doi :10.1371/journal.pone.0144217. 

27. Meister, B., Hofer, U., Ursenbacher, S. and Baur, B. (2010). Spatial genetic analysis of the 

grass  snake, Natrix natrix (Squamata : Colubridae), in an intensively used agricultural 

landscape,  Biological Journal of the Linnean Society 101(1) : 51–58. doi :10.1111/j.1095- 

8312.2010.01474.x. 

28. Meister, B., Ursenbacher, S. and Baur, B. (2012a). Frequency of multiple paternity in the 

grass  snake (Natrix natrix), Amphibia-Reptilia 33 : 308–312. doi 

:10.1163/156853812X634053. 

29. Meister, B., Ursenbacher, S. and Baur, B. (2012b). Grass Snake Population Differentiation 

over  Different Geographic Scales, Herpetologica 68(1) : 134–145. doi : 

10.1655/HERPETOLOGICA-D-11-00036.1. 

30. Nimon, K., Lewis, M., Kane, R. and Haynes, R. M. (2008). An R package to compute 

commonality  coefficients in the multiple regression case : An introduction to the package 

and a practical  example, Behavior Research Methods 40(2) : 457–466. doi 

:10.3758/BRM.40.2.457. 

31. Petit, S. and Burel, F. (1998). Connectivity in fragmented populations : Abax 

parallelepipedus in a  hedgerow network landscape, Comptes Rendus de l’Académie des 

Sciences - Series III -  Sciences de la Vie 321(1) : 55–61. 

32. Pokrant, F., Kindler, C., Ivanov, M., Cheylan, M., Geniez, P., Böhme, W. and Fritz, U. 

(2016). Integrative taxonomy provides evidence for the species status of the Ibero-

Maghrebian grass  snake Natrix astreptophora, Biological Journal of the Linnean Society 

118: 873–888.  doi:10.1111/bij.12782. 

33. Prunier, J. G., Colyn, M., Legendre, X. and Flamand, M.-C. (2017). Regression 

commonality  analyses on hierarchical genetic distances, Ecography 40 : 1–14. doi 

:10.1111/ecog.02108. 

34. Prunier, J. G., Colyn, M., Legendre, X., Nimon, K. F. and Flamand, M. C. (2015). 

Multicollinearity  in spatial genetics : separating the wheat from the chaff using 

commonality analyses,  Molecular Ecology 24(2) : 263–283. doi :10.1111/mec.13029. 

35. R Core Team (2015). R : A Language and Environment for Statistical Computing, R 

Foundation for Statistical Computing, Vienna, Austria. 

36. Richard, M., Villemey, A., Stevens, V. M., Blanvillain, G., Dardenne, S. and Baguette, M. 

(2015).  Fifteen new polymorphic microsatellite loci for the meadow brown butterfly, 

Maniola  jurtina, Biochemical Systematics and Ecology 63: 165–169. 

doi:10.1016/j.bse.2015.10.006. 

37. Schregel, J., Remm, J., Eiken, H. G., Swenson, J. E., Saarma, U. and Hagen, S. B. (2018). 

multi- level patterns in population genetics: variogram series detects a hidden isolation-by-  



70 

 

distance-dominated structure of Scandinavian brown bears (Ursus arctos), Methods in  

Ecology and Evolution . doi:10.1111/2041-210X.12980. 

38. Tobler, U., Garner, T. W. J. and Schmidt, B. R. (2013). Genetic attributes of midwife toad 

(Alytes obstetricans) populations do not correlate with degree of species decline., Ecology 

and  evolution 3(9): 2806–2819. doi:10.1002/ece3.677. 

39. Van Buskirk, J. (2012). Permeability of the landscape matrix between amphibian breeding 

sites,  Ecology and Evolution 2(12) : 3160–3167. 

40. Villemey, A., Peterman, W. E., Richard, M., Ouin, A., van Halder, I., Stevens, V. M., 

Baguette, M., Roche, P. and Archaux, F. (2016). Butterfly dispersal in farmland: a 

replicated landscape  genetics study on the meadow brown butterfly (Maniola jurtina), 

Landscape Ecology 31(7):  1629–1641. doi:10.1007/s10980-016-0348-z. 

41. Wisler, C., Hofer, U. and Arlettaz, R. (2008). Snakes and Monocultures : Habitat Selection 

 

 


