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Abstract: Biodiversity is facing an unprecedented crisis and substantial efforts are needed to conserve
natural populations, especially in river ecosystems. The use of molecular tools to guide conservation
practices in rivers has grown in popularity over the last decades, but the amount of precision and/or
biological information that would be gained by switching from the traditional short tandem repeats
(STRs) to the increasingly used single nucleotide polymorphisms (SNPs) is still debated. Here, we
compared the usefulness of STRs and SNPs to study spatial patterns of genetic variability in two
freshwater fish species (Phoxinus dragarum and Gobio occitaniae) in southern France. SNPs were
obtained from a pool-seq procedure and mapped to new genome assemblies. They provided much
more precise estimates of genetic diversity and genetic differentiation than STRs, but both markers
allowed the detection of very similar genetic structures in each species, which could be useful for
delineating conservation units. While both markers provided similar outcomes, there were two
discrepancies in genetic structures that could, nonetheless, be explained by unrecorded stocking
events. Overall, we demonstrated that SNPs are not unconditionally superior to STRs in the context
of large-scale riverscape genetic conservation, and that the choice of marker should primarily be
based on research questions and resources available.

Keywords: conservation genetics; genetic diversity; genome assemblies; hierarchical clustering;
isolation-by-distance; microsatellites; molecular tools; pool-seq

1. Introduction

Biodiversity is facing an unprecedented crisis and substantial efforts should be made
in favor of the conservation of natural populations [1,2]. However, the realization of
conservation goals requires a thorough knowledge about the functioning of the biological
systems of interest [3]. It is in this context that the last decades have seen the emergence
of the use of molecular tools to inform conservation practices [4,5]. Knowledge about
local levels of population genetic diversity and regional patterns of genetic structures
allow for targeting conservation efforts toward a better functioning of natural populations
and communities, given local and regional contingencies (eco-evolutionary trajectories,
extinction risks, habitat fragmentation, climate change, biological invasions, etc. [5–7]). The
rise of microsatellite markers (hereafter STRs, for short tandem repeats) in the late 1990s
has notably revolutionized the field of conservation genetics [8]. Being codominant, highly
polymorphic and affordable, STRs have long been the most robust type of markers used in
conservation genetics, with countless successful implementations in various fields such
as individual identification, parentage analyses, demographic reconstruction, landscape
genetics and conservation planning [9,10]. Of course, STRs are not without limitations; they
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have a complex mutation pattern and a high probability of homoplasy (convergence of
allele sizes) and null alleles that can affect the reliability and reproducibility of STR-based
population genetic inferences [9,11,12]. During the last decade, however, a new type of
marker emerged and quickly gained popularity: single nucleotide polymorphisms (SNPs).

SNPs have a well-understood mutational mechanism and show low levels of homo-
plasy [13]. Though most often biallelic and thus obviously less variable than STRs, SNPs
are the most prevalent form of genetic variation in many organisms and allow for the
assessment of genetic variability at the genome scale [14,15]. SNPs have a high poten-
tial for automated high-throughput sequencing with advantageous production cost per
locus [16,17]; most genomic data (sensu [18]) now usually consist of thousands of SNPs,
which have two important potentials for conservation: improving the accuracy and pre-
cision of parameter estimates (measures of genetic diversity and genetic differentiation
at the genome scale, effective population sizes, etc.) [12,13,19–21], and paving the way
to the identification of adaptive loci [18,22]. An increase in accuracy and precision can
be a real asset of SNPs over STRs, but the academic sphere has to admit that the field of
conservation genomics is not mature; the production of SNPs, their analytical treatment
(ideally based on reference genomes) and their interpretation remain challenging even for
researchers, and their translation into conservation practices is complex, and thus far from
being operational [9,23,24].

Putting aside the identification of adaptive patterns, is it possible that STRs are in-
formative enough to feed decision making without the need for the increased data and
costs associated with SNPs [16]? Despite the indisputable gain in resolution provided by
SNPs, a growing number of STR/SNP comparisons conclude that STRs remain relevant
markers, sometimes even performing better than SNPs in certain tasks [10]. For exam-
ple, STRs were found to be as effective as SNPs in unraveling source-sink dynamics in a
black-capped vireo (Vireo atricapilla) metapopulation and to perform better in parentage
analyses [10]. The choice of markers is particularly relevant with regard to the conserva-
tion of river ecosystems; rivers harbor a disproportionate number of species considering
the surface they represent, but they also suffer from a disproportionate number of an-
thropogenic threats, such as habitat fragmentation and degradation, biological invasions,
climate change, etc. [25,26]. The use of molecular tools to guide conservation practices in
rivers has gained in popularity over the last decades [27,28], but the amount of precision
and/or biological information that would be gained by switching from STRs to SNPs is
still unclear. For instance, SNPs did not perform better than STRs in identifying patterns
of population structures in the round whitefish (Prosopium cylindraceum) in North Amer-
ica [29], recalling the usefulness of STRs in riverscape conservation genetics, at least on a
large spatial scale [30].

Here, we compared estimates of genetic diversity and differentiation and spatial
patterns of genetic variability using both STR and SNP data from two freshwater fish
species inhabiting a large dendritic river network in southwestern France: the Garonne
minnow (Phoxinus dragarum [31]) and the Languedoc gudgeon (Gobio occitaniae [32]). In
both species, SNPs were obtained from a pool-seq procedure [17] and mapped to newly
developed genome assemblies. We first investigated if and how STRs and SNPs differed
in their estimates of genetic diversity and genetic differentiation, both in terms of value
and precision. We then investigated if and how STRs and SNPs differed in their ability
to unravel spatial patterns of genetic variability (regional genetic structures, isolation-by-
distance (IBD) and downstream increase in genetic diversity (DIGD), the latter being a
classical pattern in rivers [33]). SNPs were expected to provide lower but more precise
estimates of genetic diversity and differentiation, and to allow the detection of finer spatial
patterns of genetic variability, e.g., revealing population structures that would remain
undetected using STRs. We found that SNPs indeed provided lower and more precise
estimates than STRs, but that both types of markers were otherwise particularly congruent
in detecting spatial patterns of genetic variability in each species, legitimizing the use of
both in riverscape conservation genetics, at least at a regional scale.
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2. Materials and Methods
2.1. Study Area, Biological Models and Molecular Data

The study took place in two large river basins in southern France: the Garonne and
the Dordogne watersheds. We focused on two abundant cyprinid species: the Garonne
minnow Phoxinus dragarum [31] and the Languedoc gudgeon Gobio occitaniae [32]. These
two cyprinid species are often found in sympatry, usually in fresh shallow waters. They
are of similar maximal body length (200 and 140 mm, respectively) and they are both
insectivorous, P. dragarum preferentially feeding in the water column and G. occitaniae at the
bottom. Forty-two sites were sampled in 2011 and in 2014 with up to 30 adults from each
species caught by electric fishing, resulting in a set of 35 and 37 sampled populations in
minnows and gudgeons, respectively. On the field, a small piece of pelvic fin was collected
from each individual and was preserved in 70% ethanol, before the fish were released in
situ. Genomic DNA was extracted using a salt-extraction protocol [34] and used to obtain,
for each species, individual-based STR genotypes from material collected in 2011, as well
as population-based SNP allelic frequencies following a paired-end pool-seq procedure
from material collected in 2014. The protocol used to produce STRs is detailed in [35],
resulting in 17 and 13 loci in minnows and gudgeons, respectively, with no missing data.
The protocol used to generate SNP allelic frequencies was very similar to the one detailed
in [35], except that the reads were aligned to newly developed reference genomes rather
than to draft genomes. The development of new reference genomes for P. dragarum and
G. occitaniae is described in Appendix A and the protocol for the production of SNP allelic
frequencies (i.e., the frequency in each population of the reference allele at each SNP) is
detailed in Appendix B. SNP data were in the form of a data frame of allelic frequencies,
with populations in rows and SNPs in columns. SNP data were iteratively cleaned as
follows: we first discarded populations (i.e., rows) with more than 90% of SNPs with
missing allelic frequency and then discarded any SNPs (i.e., columns) with missing allelic
frequencies, resulting in 20,566 and 3039 SNPs (no missing data) in minnows and gudgeons,
respectively. Since our study focused on comparing markers rather than comparing species,
we randomly sampled 3000 SNPs (i.e., 3000 columns) in each species using the sample
R-function. This subset had no influence on results (not shown). Finally, for each species,
we retained populations for which we had both STRs and SNPs, resulting in a subset of
29 and 27 populations in minnows and gudgeons, respectively (Figure 1; Table 1), for a total
of 41 unique populations (11 in the Dordogne and 30 in the Garonne watersheds, 15 with
both minnows and gudgeons). Both STR individual genotypes and SNP allelic frequencies
were converted into R-objects of class genpop (Table A1—row a) and were treated similarly
in subsequent analyses. Genpop class objects contain allele counts for each locus in each
population; SNP allele counts were obtained by multiplying allelic frequencies by twice the
number of pooled individuals (Table 1).

2.2. Environmental Data

We used public databases to characterize each population by its distance from the
Garonne-Dordogne confluence (distance from the river mouth (DFM), in m), its distance
from the source of the tributary it belonged to (DFS, in m), its altitude (in m) and its mean
annual water temperature (in ◦C). Altitude and DFS were log-transformed to meet linearity
assumptions. The four variables were synthetized into a unique environmental predictor
using a principal component analysis (PCA; Table A1—row b). Missing temperatures (in
BERPre and BONSai) were imputed beforehand using a regularized iterative PCA algorithm
(Table A1—row c). Only the first principal component (PC) was retained, accounting
for 68.8% of variance in environmental data and standing for an upstream–downstream
gradient (UDG; Figure A1). For each species, we also computed the pairwise matrix of
inter-population river distances (Table A1—row d).
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Figure 1. Map of the study area indicating the localization of the 41 retained sites, the spatial
distribution of sampled species and the delineation of the two main river basins: the Garonne River
basin (South) and the Dordogne River basin (North).

Table 1. For each of the 41 retained sites, the table provides the geographic coordinates (WGS84) and
the sample size of final STR and SNP datasets in P. dragarum and G. occitaniae. It also indicates the
river basin where each site is located and the number of sampled species.

Basin Site
Number of

Species Latitude Longitude

Sample Sizes

P. dragarum G. occitaniae

STRs SNPs STRs SNPs

Dordogne AUVGen 1 45.3439517 1.1738551 24 24
BLEGou 1 44.7062117 1.3764714 29 29
BORSou 1 44.9207676 1.4612556 30 30

CAULam 1 44.8990195 0.6001853 30 30
CERSan 2 44.8769731 2.3688147 30 30 30 28
COUBay 1 44.8047176 0.7292281 30 30
DORFle 1 44.8624623 0.2432444 30 25
DROBou 1 45.3229357 0.5851939 30 30
DROPei 2 45.0745045 −0.121676 30 30 30 30
LOUFou 2 43.2743574 1.0686578 30 30 30 30
MILEgl 2 45.4151425 2.0796179 29 30 30 30

Garonne ARIVen 2 43.4371547 1.4376488 30 30 24 24
ARZMas 2 43.0843932 1.3737039 30 30 30 30
AVEDru 1 44.3367647 2.4914351 30 30
AVEPiq 1 44.0968569 1.3163485 29 29
BAIHac 2 43.2859682 0.4610215 30 30 30 30



Diversity 2023, 15, 681 5 of 21

Table 1. Cont.

Basin Site
Number of

Species Latitude Longitude

Sample Sizes

P. dragarum G. occitaniae

STRs SNPs STRs SNPs

BARMon 1 44.2097195 1.0612774 29 30
BERPre 1 44.6998674 2.1039632 30 30
BONSai 1 44.1671669 1.7498205 26 26
CELSau 2 44.5194144 1.7162116 29 30 30 30
CENSai 1 44.0367039 2.9641243 30 30
CIREsc 2 44.3196088 −0.1896798 30 30 30 30

DADAri 2 43.766423 2.3169348 29 29 30 30
DRPCav 1 44.6590784 0.6481635 30 30
GARCla 2 43.0997996 0.6294647 30 30 28 28
GARMur 2 43.4601354 1.3313024 30 30 30 30
HERBes 1 43.0842176 1.8400499 30 25
LEMMol 1 44.1795074 1.3338616 30 30
LOTCah 1 44.4740653 1.4252254 30 30
LOTCla 1 44.3472466 0.369653 30 29
LOYVou 1 45.3037878 1.4134422 30 30
OSSMon 1 43.5300669 0.335614 30 30
PETSau 2 44.2439564 0.8077916 28 28 30 30

RANMar 1 44.7966506 2.3406886 30 29
TARMil 1 44.1082554 3.085726 30 25
TESSai 1 43.9686527 1.4284642 30 30
VENSal 1 43.5395467 1.8041663 30 30
VIAJul 2 44.2170222 2.5434064 28 30 30 30
VIASeg 2 44.2967126 2.8388392 30 30 30 30

VIUMou 1 43.7039452 2.7827139 30 30
VOLPla 1 43.1711731 1.1186909 30 30

2.3. Genetic Diversity and Spatial Patterns in Genetic Diversity

For each species and each marker, we first computed the expected heterozygosity
He within each population (Table A1—row a). He is a fundamental measure of genetic
diversity which derives directly from allelic frequencies [36] and which could therefore
be calculated in a similar way for the two markers. He values were compared between
markers using Pearson’s correlation coefficients (ρ; Table A1—row e).

To assess the precision of He, we performed the same calculations using a bootstrap
procedure with 1000 iterations, randomly sampling loci with replacement at each iteration.
The resulting bootstrapped distributions were sampled at quantiles 0.025 and 0.975 to
obtain 95% confidence intervals CI95%. We also used these bootstrapped distributions to
compute the coefficients of variation (CV) of He values, as the square root of the variance to
mean ratio. To compare the precision of estimates between markers and species, we finally
computed the mean ratio of precision in He estimates RHe (±SD) as follows:

RHe = mean(CV STRs/ CVSNPs) (1)

To determine whether we could similarly detect a significant downstream increase
in genetic diversity (DIGD) in both species using both types of markers, we considered a
single mixed model (Table A1—row f) with populations as a random term and the following
fixed equation:

He = S × M ×
(

UDG + UDG2
)

(2)

With He as the measured expected heterozygosity, UDG as the score of populations
along the upstream–downstream gradient, M as the type of marker (STRs or SNPs) and S
as the species (gudgeons or minnows). The term UDG2 was considered to capture putative
quadratic trends in DIGD [37]. We used nested Type III ANOVA to assess the significance
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of interaction terms and discarded non-significant interactions while making sure that it
did not degrade the model fit quality by investigating changes in Akaike criterion (AIC;
Table A1—row e) and the normality of model residuals (Table A1—row g). For each
fixed parameter of the final model, we computed CI95% using 1000 bootstrap iterations.
Predicted He values were finally plotted against UDG for each type of marker and each
species (Table A1—row h).

2.4. Genetic Differentiation and Isolation-by-Distance

For each species and each marker, we computed the pairwise matrix D of inter-
population Nei’s genetic distances d [38] (Table A1—row a). Matrices D were then compared
between markers using Mantel tests with 1000 permutations (Table A1—row i).

To assess the precision of pairwise measures d, we further computed 100 pairwise
matrices D’ using a bootstrap procedure, randomly sampling loci with replacement at
each iteration. The resulting bootstrapped distributions of d were sampled at quantiles
0.025 and 0.975 to obtain 95% confidence intervals CI95%. We also used these bootstrapped
distributions to compute the coefficients of variation (CV) of d values, as the square root of
the variance to mean ratio. To compare the precision of estimates between markers and
species, we finally computed the mean ratio of precision in d estimates Rd (±SD) as follows:

Rd = mean(CVSTRs/ CVSNPs) (3)

To determine whether we could detect similar patterns of isolation-by-distance (IBD)
from each type of marker in each species, we computed Mantel correlograms [39]
(Table A1—row j), with each pairwise matrix of genetic distances D or D’ as the response
variable, the corresponding pairwise matrix of inter-population river distances as a predic-
tor and 1000 permutations. River distance classes were defined every 100 km. To assess the
precision of IBD inferences, we sampled the distributions of Mantel correlations obtained
from matrices D’ at quantiles 0.025 and 0.975 to obtain a CI95% about observed correlation
values at each river distance class. Correlograms were then visually compared across
markers in each species.

2.5. Genetic Structures

To compare spatial patterns of genetic variability as inferred from each marker in each
species, we used two different approaches: hierarchical clustering and spatial principal
component analyses (sPCA [40]). The goal of hierarchical clustering is to build a tree
diagram where populations that are the most genetically similar are placed on branches
that are close together. Pairwise matrices D were hierarchically clustered using the Ward’s
clustering algorithm to minimize the total within-cluster variance [41] (Table A1—row e).
For each species, trees were compared between marker types using the Baker’s Gamma
correlation coefficient (γ; Table A1—row k) and visualized in the form of a tanglegram (one
tree facing the other, with their labels connected by lines; Table A1—row k). The significance
of γ was assessed using 1000 random permutations of population labels (Table A1—row k).
To identify the optimal number k of clusters in each tree, we used the average silhouette
method [42]: trees were cut into 2 to 20 clusters (Table A1—row l) and the value of k was
identified as the one maximizing silhouette width (Table A1—row m).

We then used sPCAs (Table A1—row a). The goal of sPCA is to visualize spatial
patterns of genetic variability by seeking principal components that optimize the variance
of population allelic frequencies while taking the spatial autocorrelation of data into account.
For each species, we used a network connecting each population to its n closest neighbors
given pairwise river distances, with n chosen so as to minimize the number of neighbors
while including all populations in the network (Table A1—row n). We used n = 3 in
minnows and n = 4 in gudgeons, and only retained the two first PC from each sPCA,
based on scree plot investigations. For each species and each retained PC, sPCA scores of
populations were interpolated over the study area for visualization (Table A1—row o) and
compared between markers using Pearson’s correlation coefficients (ρ).
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3. Results
3.1. Genetic Diversity and Spatial Patterns in Genetic Diversity

Whatever the species, the precision of He estimates was about one order of magnitude
(i.e., ~10-fold) higher with SNPs than with STRs (precision ratios RHe of 10.58 ± 1.51 and
8.01 ± 1.77, in gudgeons and minnows, respectively; error bars in Figure 2A). SNPs also
yielded much lower He estimates than STRs (Table 2; marginal ‘SNP’ effect = −0.410).
Nevertheless, He estimates were significantly correlated across markers (ρ > 0.62, p < 0.001;
Figure 2A). Furthermore, similar DIGD patterns were identified whatever the species
or the marker (Table 2 and Figure 2B); He increased downstreamward (marginal ‘UDG’
effect = 0.017), although this increase was less pronounced in the lower reaches (marginal
‘UDG2’ effect = −0.003).

Table 2. Results of the final mixed-effect model explaining He. For each predictor, the table provides
the inferred estimate along with the lower (2.5%) and the upper (97.5%) bound of the CI95%, as well
as results and significance of Wald χ2 tests (Type III Anova). ‘Random effect’ represents the random
standard deviation from the intercept due to population identity. None of the interactions including
UDG or UDG2 were retained in the final model, indicating similar DIGD patterns across species and
markers (Figure 2B).

Estimate 2.5% 97.5% χ2
(1,104) p-Value

Intercept (STRs in gudgeons) 0.634 0.617 0.652 4947.91 <0.0001
SNP −0.410 −0.428 −0.391 1856.42 <0.0001

Minnows 0.044 0.024 0.064 18.35 <0.0001
UDG 0.017 0.010 0.24 23.94 <0.0001
UDG2 −0.003 −0.005 −0.0001 4.22 0.0399

SNP: Minnows −0.049 −0.075 −0.023 13.72 0.0002

Random effect 0.026 0.018 0.037 / /

3.2. Genetic Differentiation and Isolation-by-Distance

As for He, the precision of estimates of pairwise measures of genetic distances d was
about one order of magnitude higher with SNPs than with STRs, with a higher precision
ratio obtained in gudgeons (Rd = 14.65 ± 4.10) than in minnows (Rd = 8.10 ± 1.76; error
bars in Figure 3A). SNPs also yielded lower d estimates (ln(dSNPs) = −2.62 ± 0.77) than
STRs (ln(dSTRs) = −1.48 ± 0.63; Figure 3A). Nevertheless, d estimates were significantly
correlated across markers (r > 0.74, p < 0.001; Figure 3A). Furthermore, although the
precision of SNP autocorrelograms was much higher than that of STRs (as indicated by
the width of envelopes in Figure 3B), similar IBD patterns were identified in each species,
whatever the marker: in gudgeons, populations showed significant genetic relatedness
over the first 50–100 km (first river distance class), and no or negative autocorrelation at
further distances; in minnows, populations showed significant genetic relatedness over
the first 500–600 km (five first river distance classes), and no or negative autocorrelation at
further distances (Figure 3B). The main discrepancy among markers was in minnows, with
a non-significant Mantel’s r at the third distance class when using STRs.

3.3. Genetic Structures
3.3.1. Hierarchical Clustering

In gudgeons, Wards’ hierarchical clustering trees computed from STRs and SNPs were
highly correlated (γ = 0.797, p < 0.001), despite discrepancies in the positions of populations
(Figure 4A). In both trees, the optimal number of clusters was k = 2 (Figure A2), with
identical cluster compositions, and Cluster 2 comprised seven populations from the center
of the Garonne River basin (Figure 4B). In minnows, Wards’ hierarchical clustering trees
computed from STRs and SNPs were also highly correlated (γ = 0.832, p < 0.001), despite
discrepancies in the positions of populations and a different optimal clustering. The optimal
number of clusters was k = 2 in STRs and k = 3 in SNPs, although a value of k = 2 in SNPs
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was also highly supported by the data (Figure A2). Cluster 3 in SNPs comprised a single
population, ARZMas, that was assigned to Cluster 1 when k = 2 (Figure 4A). Aside from
this outlier population, the compositions of Clusters 1 and 2 were highly congruent, with
Cluster 1 corresponding to the Garonne River basin and Cluster 2 to the Dordogne River
basin. The only exception was the RANMar population, assigned to Cluster 2 with STRs
but to Cluster 1 with SNPs (Figure 4A).
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Figure 3. (A) In each species, bivariate comparisons of pairwise Nei’s genetic distances d between
STRs (x-axis) and SNPs (y-axis) on a base−10 log scale. Error bars stand for CI95% as computed
from bootstrap resampling of loci (very small in SNPs). Mantel’s correlation coefficients r and
associated significance levels are also provided. (B) For each species, Mantel correlograms showing
the relationships between pairwise Nei’s genetic distances d and river distance classes. Colored
squares represent significant Mantel’s r coefficients (α < 0.05) after progressive Bonferroni correction.
Colored envelopes represent CI95% about r at each distance class (note that envelopes are very tight
and barely visible in the case of SNPs).
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Figure 4. For each species: (A) Tanglegram showing Wards’ hierarchical clustering trees from
STRs (purple) and SNPs (orange) with their labels connected by lines. The cluster assignment of
populations after cutting the tree at the optimal k value is represented by grey (Cluster 1), blue
(Cluster 2) and green (Cluster 3) rectangles. Two populations (RANMar and ARZMas, in bold) were
cross-assigned in minnows, as indicated by thick lines connecting labels. Baker’s Gamma correlation
coefficients (γ) between trees are also provided. (B) Spatial visualization of Clusters 1 to 3, in grey,
blue and green, respectively. Populations are represented with dots, and clusters are delineated
with a thick white line. The cross-assigned populations RANMar and ARZMas are represented with
bicolor dots, according to their assignment with STRs (left-half color) and with SNPs (right-half color).
Note that the ARZMas population was assigned to Cluster 1 with both STRs and SNPs when using
an optimal k value of 2 in SNPs (Figure A2).

3.3.2. Spatial Principal Component Analyses

In both species, the two first sPCA components (PCs) from STRs and SNPs yielded
highly correlated population scores (ρ > 0.94, p < 0.001; Figure 5B) and very similar spatial
structures (Figure 5C,D and Figure A3). In gudgeons, the first PC (C1) segregated popula-
tions located in the southern upstream reaches of the Garonne River basin (populations
with positive scores) from the rest of the basin, whereas populations from the Dordogne
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River basin showed little contribution to the PC (Figure 5C). This pattern partly coincided
with the delineation of Cluster 2 inferred from Wards’ trees. The second PC (C2) distin-
guished the Dordogne River basin (positive scores) from the Garonne River basin, and
specifically from populations located in the eastern upstream reaches of the Garonne River
basin (Figure 5D). In minnows, the first PC (C1) differentiated the Dordogne River basin
from the Garonne River basin (Figure 5C), in accordance with the clusters inferred from
Wards’ trees. The second PC (C2) mostly segregated populations located in the eastern
upstream reaches (positive scores) from populations located in the southern upstream
reaches (negative scores) of the Garonne River basin.
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Figure 5. For each species: (A) Neighboring network used in sPCAs, each population being connected
to four and three neighbors in gudgeons and minnows, respectively. (B) Scree plots of principal
components (PCs) in STRs (purple) and SNPs (orange). Non-retained PCs are represented by faded
bars. For retained PCs (C1 and C2), Pearson’s correlation coefficients between population scores
from STRs and SNPs are also provided. (C) Visualization of the spatial genetic structure inferred
from the first PC with SNPs (same pattern as with STRs; Figure A3). (D) Visualization of the spatial
genetic structure inferred from the second PC with SNPs (same pattern as with STRs; Figure A3). In
both (C,D), large white (purple background) and black (yellow background) squares stand for highly
negative and positive scores, respectively. Small squares stand for small sPCA scores.
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4. Discussion

In our study, the main difference between SNPs and STRs was the precision of es-
timates of genetic diversity and genetic differentiation. In line with our expectations,
estimates were one order of magnitude more precise with SNPs than with STRs, because
of the much higher number of loci in SNPs than in STRs. The mean value of estimates of
genetic diversity and genetic differentiation was also much lower in SNPs than in STRs,
an expected outcome given differences in levels of polymorphism in each type of marker.
These differences, however, had no influence on inferences regarding spatial patterns of
genetic diversity, of isolation-by-distance and of genetic structuration, which were all highly
congruent between markers. Our findings thus add to a growing body of scientific literature
demonstrating that high-throughput markers such as SNPs might not be unconditionally
superior to traditional approaches such as STRs in the context of genetic conservation [9,10].

Estimates of genetic diversity from each type of marker were significantly correlated
and allowed the detection of similar patterns of downstream increase in genetic diversity
(DIGD) in both species. DIGD is a classical pattern in river systems, stemming from the
impoverishment of genetic pools in upstream areas through downstreamward asymmetri-
cal gene flow and/or upstreamward recolonization from glacial refugees, and/or from the
reduced influence of genetic drift in downstream areas where effective population sizes
are usually larger [28,33]. The observed quadratic relationship between genetic diversity
and distance from the source is also an expected pattern in river networks, which can
be explained by their dendritic branching pattern [33,37]. Teasing apart the influence of
DIGD from that of anthropogenic stressors (e.g., habitat fragmentation, hybridization with
domestic strains, etc.) is crucial to properly planning conservation actions [37], and our
results indicate that both types of markers were up to the task.

Pairwise estimates of genetic differentiation from each type of marker were also sig-
nificantly correlated and allowed the detection of similar patterns of isolation-by-distance
(IBD) in each species. Interestingly, the inferred IBD pattern was much more pronounced in
gudgeons than in minnows, with genetic drift being much more influential than gene flow
at distances higher than ~100 km in the former and at distances no less than ~400 km in
the latter [43]. This difference in the spatial extent of migration-drift equilibrium may stem
from several non-exclusive factors that would deserve further analyses: higher dispersal
abilities and/or larger effective population sizes in minnows, species-specific responses
to historical contingencies and/or anthropogenic stressors [43,44]. Nonetheless, regional
conservation plans should probably take these distinct patterns into consideration when
delineating conservation units [45].

The delineation of conservation units could, of course, also be informed through
genetic structure analyses [46]. Here, we found that both types of markers revealed very
similar genetic structures. Considering outputs from both sPCA and hierarchical clustering,
at least three genetic clusters could be identified in each species: in gudgeons, the center of
the Garonne River basin, the southern headwaters of the Garonne River basin (Pyrenees
mountains), and the Dordogne River basin; in minnows, the Dordogne River basin, the
eastern headwaters of the Garonne River basin (mountains of the “Massif Central”) and
the southern headwaters of the Garonne River basin (Pyrenees mountains). At least two
clusters corresponding to regional biogeographical features were thus common to both
species: the Dordogne River basin and the Pyrenees mountains. These findings indicate
that (i) the Garonne and the Dordogne river basins comprise rather independent genetic
entities and that (ii) in the Garonne River basin, Pyrenean headwaters could be considered
as a multi-species conservation unit, although the operational benefits of their preservation
should of course be further evaluated [45]. The identification of Pyrenean headwaters as
a putative conservation unit is in line with the reported disproportionate contribution of
headwaters to biodiversity at the scale of river networks [47].

Interestingly, although STRs and SNPs provided very similar outcomes, we identified
two discrepancies between markers in minnows’ hierarchical clustering. First, the ARZMas
population was assigned to a cluster that was only detected using SNPs. This finding may
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suggest a higher resolution of SNPs in detecting subtle genetic structures [30]. However,
given that SNPs were collected 3 years after STRs, we cannot exclude the probability that
individuals from an unknown origin (captive-bred minnows, or minnows originating
from another basin) were stocked in the meantime, for instance for recreational fishing,
thus altering the genetic signature of the ARZMas population [37] between 2011 and 2014.
Second, the RANMar population, located in the Garonne River basin, was surprisingly
assigned to the “Dordogne” cluster using STRs, but not using SNPs. This finding could
locally suggest a lack of resolution of STRs compared to SNPs, the modest number of STR
loci not allowing the detection of specific genetic signatures in certain parts of the genome.
However, as in the case of the ARZMas population, we cannot exclude the probability that
individuals from the Dordogne River basin were stocked in the RANMar population (for
instance, from the geographically very close CERSan population) before 2011, possibly just
before the first sampling session. The fact that this “Dordogne” signature of the RANMar
population was not detected with SNPs in 2014 could have resulted from the natural
extirpation of allopatric strains within three years [48–50]. These two discrepancies could
therefore be explained by unrecorded stocking events and are not sufficient to discredit
STRs compared to SNPs without further investigation.

In this study, we assessed the genetic variability of two parapatric freshwater fish
species on a relatively large spatial scale, with some populations located more than 900 km
apart along the two considered river networks. We demonstrated that, at this scale, both
STRs and SNPs yielded very similar results when considering population genetic analyses
classically used in conservation genetics. At a finer spatial scale, of course, SNPs could
have allowed the detection of subtle genetic structures that STRs might have missed [30],
although our experience suggests that STRs remain relevant markers at inter-population
distances of only a few hundred meters, as exemplified in other studies carried out within
the Garonne River basin itself, particularly in the Célé (e.g., CELSau in Figure 1) and the
Viaur rivers (VIAJul and VIASeg in Figure 1) [28,37]. SNPs can provide unprecedented
opportunities, notably for the identification of adaptive patterns [13,18,22], but we join
the growing number of researchers who defend the continued applicability of STRs in
population genetic research, and in conservation genetics in particular [9,10,51]. This
assertion is all the more important because, besides the fact that SNPs remain costly when
a panel of STRs is already available (although pool-seq procedures and SNP panels can be
highly cost-effective [17,52,53]), the production of SNPs requires bioinformatic expertise and
computing power that may remain out of reach for some [10]. Moreover, some important
issues, such as ascertainment biases ensuing from SNP discovery protocols [54–56], are still
often overlooked (including in this very study), notably because (user-friendly) methods to
circumvent them remain to be developed [57]. On the contrary, STRs benefit from decades
of feedback, and we believe that they have definitely earned their place in the toolbox of
researchers and managers, particularly in the case of riverscape studies [28].
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Appendix A. Genome Assembly

In each species (Phoxinus dragarum and Gobio occitaniae), a piece of muscle was collected
from a single individual that was sampled as described in the main text and euthanized
by benzocaine overdose. After DNA extraction as described in the main text, high-fidelity
(HiFi) long reads were produced by the Gentyane company (Clermont-Ferrand, France) for
G. occitaniae and the Novogene (UK) Company Limited (Cambridge, UK) for P. dragarum
using Sequel 8M PacBio systems [58]. Circular consensus sequences (CCS) were generated
using the ccs script (Table A1—row p) and the resulting bam files were converted to fastq
files using bedtools (Table A1—row q). Genome assemblies were produced using hicanu
(Table A1—row r), with an estimated genome-size of 1125 Mb for P. dragarum and 1555 Mb
for G. occitaniae [59], a high sensitivity level, a corrected error rate of 0.055, a correction of
all reads (corOutCoverage = 999) and a coverage cutoff of 5 (stopOnLowCoverage = 5).
Assembly fastq files were manipulated using SeqKit (Table A1—row s) to discard repeat,
bubble and circular sequences and were curated using purge_haplotigs (Table A1—row t).
Finally, we used BUSCO for a quantitative assessment of final genome assemblies, with the
actinopterygii_odb10 database in both species (Table A1—row u).

The following table provides the main characteristics of the final assemblies. Note
that the G. occitaniae assembly showed a higher proportion of BUSCO duplicates than the
P. dragarum assembly (20% against 4%), but that the proportion of missing or fragmented
BUSCOs was higher in G. occitaniae than in P. dragarum (12.2% against 6.8%).

Phoxinus dragarum Gobio occitaniae

Localization of specimens (Lat. Long.) 42.958 N 1.085 E 42.921 N 1.898 E

Accession number JARPMJ000000000 JARQWZ000000000

Assembly name CNRS_Phodra_1.0 CNRS_Gobocc_1.0

Assembly size (Mb) 968.1 1721.8
% missing bases 0 0

% GC 39.14 39.99
Number of contigs 10,137 10,985

Number of contigs > 100 kb 3100 4833
N50 contig length (kb) 128.19 315.98

Shortest contig 13,920 8919
Longest contig 1,089,874 2,163,237

Complete BUSCOs 3195 (87.8%) 3394 (93.2%)
Complete and single-copy BUSCOs 3050 (83.8%) 2666 (73.2%)
Complete and duplicated BUSCOs 145 (4%) 728 (20.0%)

Fragmented BUSCOs 117 (3.2%) 86 (2.4%)
Missing BUSCOs 328 (9%) 160 (4.4%)

Total BUSCO groups searched 3640 (100%) 3640 (100%)

Appendix B. Production of SNP Allelic Frequencies

For each species and each station, DNA from all individuals was pooled at equimolar
concentrations to reach a total amount of 5 mg of DNA, according to individual concentra-
tions measured using a QuBit 2.0 fluorometer (2.0; Life Technologies, Carlsbad, CA, USA).
Pooled DNA from each species and each station was homogenized and digested using SbfI
restriction enzymes, followed by barcode ligation, sample pooling, DNA shearing, size
selection of RAD tags (150 bp), adaptor ligation, RAD tag amplification and sequencing on
two Hiseq lanes (GeT Platform, Toulouse, France). Resulting demultiplexed paired-end
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short reads were filtered using the process_radtags and the clone_filter functions from
Stacks [60], in order to remove reads with uncalled bases or low-quality scores and discard
PCR duplicates. Filtered reads were then aligned on the corresponding reference genome
using the mem function from BWA [61]. Aligned SAM files were converted to BAM format
with the view and sort functions from SamTools [62], and filtered for unpaired, unmapped
or badly mapped reads (mapping quality score < 20) using the filter function from Bam-
Tools [63]. For each species, all indexed and filtered BAM files were then assembled in a
single mpileup file using the mpileup function from SamTools. These mpileup files were
synchronized in Popoolation2 [64] with the mpileup2sync.jar java script. Finally, SNP allelic
frequencies were determined using the snp-frequency-diff.pl perl script in Popoolation2
with a minimum allele count of 4 and a coverage ranging from 30 to 400.

Table A1. Main resources (R-packages or conda/github-repository) and associated functions/scripts
used in this study.

In-Text Reference Resources Functions/Scripts Reference

a R-adegenet as.genpop, Hs, dist.genpop, spca [65]
b R-factoMineR PCA [66]
c R-missMDA imputePCA [67]
d R-riverdist riverdistancemat [68]
e R-stats cor.test, AIC, hclust [69]
f R-glmmTMB glmmTMB [70]
g R-DHARMa simulateResiduals [71]
h R-sjPlot plot_model [72]
i R-vegan mantel [73]
j R-mpmcorrelogram mpmcorrelogram [74]

k R-dendextend cor_bakers_gamma, untangle,
tantelgram, sample.dendrogram [75]

l R-factoextra hcut [76]
m R-cluster silhouette [77]
n R-evclust knn.dist [78]
o R-interp interp [79]
p github-PacificBiosciences ccs [58]
q conda-bedtools [80]
r github-marl canu [81]
s conda-SeqKit seq, grep [82]
t conda-purge_haplotigs hist, cov, purge [83]
u conda-BUSCO busco [84]

A representation of the two first principal components (PCs) was used to synthetize
environmental data. Only the first PC was retained, accounting for 68.8% of variability in
environmental data. It distinguished populations located at high altitude and far from the
river mouth (upstream populations, also characterized by cooler water temperatures) from
populations located in warmer water temperatures and far from the source of tributaries
they belong to (downstream populations, also characterized by lower altitudes).

For each species and each type of marker, the average tree silhouette width for a
number of clusters k varying from 2 to 20 was calculated. In gudgeons and in the tree based
on STRs in minnows, the optimal number of clusters was 2. In the tree based on SNPs in
minnows, the optimal number of clusters was 3 (width = 0.3492), but a value of 2 was also
highly supported (width = 0.3487).
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