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Abstract

Direct gradient analyses in spatial genetics provide unique opportunities to describe the

inherent complexity of genetic variation in wildlife species and are the object of many

methodological developments. However, multicollinearity among explanatory variables is

a systemic issue in multivariate regression analyses and is likely to cause serious difficul-

ties in properly interpreting results of direct gradient analyses, with the risk of erroneous

conclusions, misdirected research and inefficient or counterproductive conservation mea-

sures. Using simulated data sets along with linear and logistic regressions on distance

matrices, we illustrate how commonality analysis (CA), a detailed variance-partitioning

procedure that was recently introduced in the field of ecology, can be used to deal with

nonindependence among spatial predictors. By decomposing model fit indices into unique

and common (or shared) variance components, CA allows identifying the location and

magnitude of multicollinearity, revealing spurious correlations and thus thoroughly

improving the interpretation of multivariate regressions. Despite a few inherent limita-

tions, especially in the case of resistance model optimization, this review highlights the

great potential of CA to account for complex multicollinearity patterns in spatial genetics

and identifies future applications and lines of research. We strongly urge spatial geneticists

to systematically investigate commonalities when performing direct gradient analyses.
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Direct gradient analyses in spatial genetics

Spatial genetics, including both landscape and seascape

genetics, is an ebullient scientific field that aims at

investigating the influence of spatial heterogeneity on

the spatial distribution of genetic variation (Manel et al.

2003; Holderegger & Wagner 2008; Guillot et al. 2009;

Storfer et al. 2010). In the context of accelerating land-

scape fragmentation worldwide, spatial genetics allows

a thorough assessment of landscape functional connec-

tivity (With 1997) and has now emerged as a valuable

way of assisting both landscape management and wild-

life conservation (Segelbacher et al. 2010).

Two main approaches can be used to investigate the

influence of landscape (respectively, seascape) features

on spatial genetic patterns (Balkenhol et al. 2009; Guillot

et al. 2009): overlay methods and direct gradient analy-

ses (sensu ter Braak & Prentice 1988). In overlay meth-

ods, genetic structures inferred from clustering

algorithms (Pritchard et al. 2000; Chen et al. 2007; Jom-

bart et al. 2008) or edge-detection methods (Monmonier

1973; Barbujani et al. 1989) are visually confronted to

landscape patterns (e.g. Frantz et al. 2012; Prunier et al.

2014). In direct gradient analyses, regression procedures

such as Mantel tests (Cushman et al. 2006; Shirk et al.

2010; Castillo et al. 2014), multiple regressions on dis-

tance matrices (MRDM; Legendre et al. 1994; Holzhauer

et al. 2006; Lichstein 2007; Wang 2013; Balkenhol et al.

2014), mixed-effect models (Selkoe et al. 2010; Van
Correspondence: J�erôme G. Prunier, Fax: (32) 10 47 38 72;

E-mail: jerome.prunier@gmail.com

© 2014 John Wiley & Sons Ltd

Molecular Ecology (2015) 24, 263–283 doi: 10.1111/mec.13029



Strien et al. 2012; Peterman et al. 2014) or constrained

ordination techniques (e.g. distance-based redundancy

analyses or canonical correspondence analyses, which

imply multivariate regressions; Angers et al. 1999;

Legendre & Anderson 1999; Balkenhol et al. 2009; Vang-

estel et al. 2012; Orsini et al. 2013 are used to investigate

the relative contribution of various independent vari-

ables (predictors) to the variance of a dependent

(response) variable. In spatial genetics, the dependent

variable is most often expressed as genetic distances

between pairwise sampled individuals and populations

(Prunier et al. 2013; Luximon et al. 2014). In the specific

case of constrained ordination techniques, it may also

be expressed as the ordination solution of the pairwise

distance matrix using principal coordinate analysis

(PCoA; Legendre & Anderson 1999; Orsini et al. 2013).

Explanatory variables are most often derived from cate-

gorical (e.g. land cover) or continuous spatial data.

When focusing on the effects of landscape on gene flow,

explanatory variables can be either expressed as relative

proportions of categorical landscape features between

pairwise sampled units (transect-based approaches;

Angelone et al. 2011; Emaresi et al. 2011; Van Strien

et al. 2012; Keller et al. 2013), as pairwise effective dis-

tances computed from parameterized resistance surfaces

with least-cost or isolation-by-resistance modelling (Ad-

riaensen et al. 2003; McRae 2006; Peterman et al. 2014)

or, in constrained ordination techniques, as site-specific

environmental measures (e.g. Pilot et al. 2006). When

focusing on the effects of local environmental condi-

tions on site-specific attraction or productivity, explana-

tory variables may also be expressed as environmental

dissimilarities between sampled points (Wang 2013;

Pfluger & Balkenhol 2014).

When the objective of the study is to maximize the

predictive power of a regression model and eventually

to compile several univariate resistance surfaces into a

unique weighted multivariate one (Spear et al. 2010;

Zeller et al. 2012), a model fit index, quantifying the

proportion of variance in the dependent variable that is

explained by a given model (e.g. zero-order correlation

coefficients in univariate procedures, R2 in MRDM, R2
b

in mixed-effect models or AIC in constrained ordination

techniques), is used as a criterion for stepwise regres-

sion (e.g. Legendre & Legendre 1998; Graves et al.

2012), hierarchical model selection (e.g. Selkoe et al.

2010; Emaresi et al. 2011; Dudaniec et al. 2012; Van

Strien et al. 2012; Blair et al. 2013 or resistance model

optimization (Shirk et al. 2010; Perez-Espona et al. 2012;

Dudaniec et al. 2013; Castillo et al. 2014; Peterman et al.

2014). In an explanatory approach, that is, when the

goal is simply to gain insight into the relative influence

of explanatory variables on an observed biological

response, model fit index is often only considered as a

way to support the reliability of a unique (full) regres-

sion model (e.g. Wang 2013; Balkenhol et al. 2014;

Guarnizo & Cannatella 2014; Nanninga et al. 2014). In

both cases though, standardized regression weights

(hereafter called beta weights b), or canonical coeffi-

cients in the case of constrained ordination techniques,

are used to rank predictors according to their contribu-

tions in a multivariate regression equation. As pairwise

genetic distances are nonindependent, significance lev-

els of model fit and predictors are usually computed

through matrix permutations (Legendre et al. 1994) or

pseudobootstrap procedures (Worthington Wilmer et al.

2008).

Multicollinearity issues

There is a growing but unresolved concern about the

reliability of regression procedures in correctly identify-

ing the spatial determinants of observed genetic pat-

terns and ruling out noninformative spatial features

(Balkenhol et al. 2009). Several simulation studies

showed that partial Mantel tests may yield poor results

in both ways (Cushman & Landguth 2010; Legendre &

Fortin 2010; Cushman et al. 2013; Graves et al. 2013;

Guillot & Rousset 2013), and researchers are rather

encouraged to use multivariate approaches (Bolliger

et al. 2014; Guarnizo & Cannatella 2014). Whatever the

approach though, beta weights or canonical coefficients,

their standard errors and thus marginal statistics used

to test their significance as well as model fit indices

may be heavily impacted by even weak levels of multi-

collinearity (nonindependence) among predictors

(Angers et al. 1999; Graham 2003; Smith et al. 2009;

Nimon & Reio 2011; Kraha et al. 2012). Multicollinearity

is thus likely to cause serious difficulties in properly

interpreting results of direct gradient analyses (Mac

Nally 2000; Nimon et al. 2010; Dormann et al. 2013). For

instance, it may be difficult to identify the likely causal

variables among collinear predictors showing significant

correlation with the response variable (Graham 2003;

Spear et al. 2010; Dormann et al. 2013). Spurious correla-

tions are also likely to occur in the presence of suppres-

sion, that is, when a variable confounds the variance

explained by another (Courville & Thompson 2001;

Nimon & Reio 2011; Beckstead 2012; Ray-Mukherjee

et al. 2014). For instance, beta weights may be negative

even when the predictor and the dependent variable

are positively correlated. In case of multicollinearity, a

thorough understanding of the correlation structure

among predictors is thus primordial (Dormann et al.

2013).

Multicollinearity among explanatory variables is a

regular feature in ecology (Graham 2003; Dormann et al.

2013) and is probably unavoidable in spatial genetic
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studies as predictors are derived from landscape

characteristics that cannot be experimentally controlled

(Graham 2003; King et al. 2005; Whittingham et al. 2006;

Smith et al. 2009). Multicollinearity is multifaceted in

origins. It is largely influenced by specific local land-

scape configuration patterns resulting from climate,

geological events, past disturbances and anthropogenic

pressures. Some trends can be observed though. Some

spatial features usually come together (resulting in posi-

tive correlations among predictors), while others are

mutually exclusive (resulting in negative correlations).

Among features that usually come together: rivers and

valleys or altitude and snow cover, obviously, but also

rivers and urban areas, because of historical facilities

offered by waterway transport, or motorways and agri-

cultural surfaces, because of the regrouping of culti-

vated plots due to the increase in farmland value

(Drescher et al. 2001; Prunier et al. 2014). On the con-

trary, categorical land-cover features are in essence

mutually exclusive, as a pixel cannot be classified as

‘forest’ and as ‘bare land’ at the same time. As a conse-

quence, when the landscape matrix is composed of a

few predominant land-cover classes, negative correla-

tions will often be observed between main predictors

(King et al. 2005; Rioux Paquette et al. 2014). The same

observation can be made in the context of transect-

based approaches, when explanatory variables are

expressed as relative quantities summing to 100% (e.g.

habitat proportions in a delimited area; Angelone et al.

2011; Emaresi et al. 2011; Van Strien et al. 2012;

Dormann et al. 2013).

Multicollinearity also typically arises in the specific

case of resistance model optimization (Spear et al. 2010),

when predictors are derived from a large set of alterna-

tive but closely related models (e.g. Cushman et al.

2013; Dudaniec et al. 2013). The use of various functions

to reclassify or combine univariate resistance surfaces

(Shirk et al. 2010; Spear et al. 2010; Peterman et al. 2014)

may also influence patterns of nonindependence among

predictors. To further complicate matters, multicollin-

earity patterns can vary depending on the spatial con-

figuration of sampled points (Graves et al. 2013), change

through time and differ across spatial scales (Dormann

et al. 2013), making it an outstanding challenge in

spatial genetics (Anderson et al. 2010).

Dealing with multicollinearity

There is a growing awareness of multicollinearity issues

in spatial genetics (Garroway et al. 2011; Wedding et al.

2011; Dudaniec et al. 2012; Blair et al. 2013), and several

approaches have been proposed to deal with multicol-

linearity issues. The simplest one is variable exclusion.

The idea is to discard any variable showing correlations

with other predictors higher than a certain threshold. A

Pearson’s correlation coefficient |r| > 0.7 is commonly

used as a threshold (Dormann et al. 2013), although the

exact value is left to the discretion of investigators

(e.g. Angelone et al. 2011; Graves et al. 2012; Keller et al.

2013; Balkenhol et al. 2014). The estimation of variance

inflation factors (VIF) can also be used as a way to iden-

tify nonindependence among predictors (Dyer et al.

2010; Blair et al. 2013). VIF is a positive value represent-

ing the overall correlation of each predictor with all oth-

ers in a model. For a predictor Xi, VIFi is computed as

the inverse of the coefficient of nondetermination

ð1=ð1� R2
i ÞÞ, where R2

i is the model fit of the multiple

regression of Xi over all other predictors (Neter et al.

1990; Stine 1995). VIF values >10 are usually considered

as evidence for substantial multicollinearity and often

justify the removal of certain predictors (but see O’Brien

2007 for a discussion on this subject). Variable exclusion

may also be based on the investigation of principal

component analyses (PCA) to identify and select a few

biologically relevant predictors among a set of collinear

variables (Manel et al. 2010). Nevertheless, variable

exclusion, ignoring the unique contribution of discarded

predictors, may result in a loss of explanatory power

(Graham 2003).

Multicollinearity may also be addressed through the

computation of orthogonal predictors using uncon-

strained ordination techniques. For instance, linear com-

binations of collinear variables (principal components)

can be used as synthetic independent predictors in prin-

cipal component regressions (Vigneau et al. 1997). How-

ever, this kind of approach may show serious statistical

pitfalls (Hadi & Ling 1998), while the new independent

variables will often be difficult to interpret (see Dor-

mann et al. 2013 for details and a review of other avail-

able methods).

In 2001, Courville & Thompson advocated the simul-

taneous interpretation of beta weights b and structure

coefficients rs (or squared structure coefficients r2s ) to

improve the interpretation of multivariate regressions

(Box 1). A structure coefficient is the bivariate (or zero-

order) Pearson’s correlation between a predictor X and

predicted values Ŷ of the dependent variable Y (Pedha-

zur 1997; Nathans et al. 2012). A squared structure coef-

ficient thus represents the amount of variance in model

fit that is accounted for by a single predictor (Nimon

et al. 2008). By construction, structure coefficients may

also be considered as rescaled zero-order correlations

(Box 1; Courville & Thompson 2001). Structure coeffi-

cients are thus independent of collinearity among

explanatory variables and allow ranking independent

variables based on their direct contribution to model fit

(Kraha et al. 2012; Ray-Mukherjee et al. 2014). For

instance, a situation where a predictor X shows low b
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but high r2s may indicate that, because of collinearity

among predictors, a proportion of the variance in X

was assigned to another predictor in the process of

computing beta weights. However, structure coefficients

are limited. They do not precisely indicate which pre-

dictors synergistically or antagonistically contribute to

predicting the dependent variable nor do they allow

quantifying the amount of shared variance between col-

linear predictors (Nathans et al. 2012). Other indices can

be used to dissect the complexity of predictors’ relative

contribution to model fit (Box 1). Among these indices,

unique and common effects computed in commonality

analysis are of great value (Box 2; Campbell & Tucker

1992; Nimon & Reio 2011).

Commonality analysis

Commonality analysis (CA) is a detailed variance-

partitioning procedure that was developed in the 1960s

(Newton & Spurrel 1967). From the field of human sci-

ences, it was very recently brought to the attention of

ecologists (Ray-Mukherjee et al. 2014). CA can provide

substantial guidance for the interpretation of general-

ized linear models, including linear and logistic regres-

sions, hierarchical mixed-effect models and canonical

correlation analyses (not to be confused with canonical

correspondence analyses; Legendre & Anderson 1999),

by decomposing the overall model fit into its unique

and common effects (Campbell & Tucker 1992; Nimon &

Oswald 2013; Nimon et al. 2013a). Unique and common

effects are nonoverlapping components of variance that

ensue from formulae involving the regression of the

dependent variable over all possible subsets of predic-

tors (Box 3; Nimon & Reio 2011; Nathans et al. 2012;

Ray-Mukherjee et al. 2014). By predictor, we mean any

additive term in a regression equation: interaction

effects are thus considered as predictors (Ray-Mukherjee

et al. 2014). For a number k of predictors, CA returns a

table of (2k�1) commonality coefficients (or commonali-

ties) including both unique and common effects.

Unique effects U, or first-order effects, quantify the

amount of variance in the dependent variable Y that is

uniquely accounted for by a single explanatory variable.

A negligible value of U indicates that the regression

model only improves slightly with the addition of the

predictor, when entered last in the model (Nathans

et al. 2012; Roberts & Nimon 2012). Common effects

represent the proportion of variance in the dependent

variable that can be jointly explained by two or more

predictors together, making CA particularly well suited

in the case of multicollinearity (Campbell & Tucker

1992; Ray-Mukherjee et al. 2014). The common compo-

nents of two or three (or k) variables are, respectively,

called second- or third-order (or kth-order) commonalities.

The sum C of all commonalities involving a specific

predictor indicates the amount of variance explained by

this predictor that is shared with other explanatory

variables. When they are divided by model fit index, U

and C, respectively, represent the unique and common

contributions of a predictor to the explained variance

(that is, unique and common contributions to model fit)

rather than to the total variance in the dependent vari-

able. The sum T = (U + C) represents the total contribu-

tion of a predictor to the dependent variable

irrespective of collinearity with other variables, that is,

in the case of linear regression, the squared zero-order

(Pearson’s) correlation r2 between the predictor and the

dependent variable (Nimon & Reio 2011; Kraha et al.

2012). When T is divided by the model fit index, it is

equivalent to the squared structure coefficient r2s (Kraha

et al. 2012; Nimon & Oswald 2013; Ray-Mukherjee et al.

2014) and indicates how much each predictor contrib-

utes to the explanation of the entire model (model fit

index) irrespective of other predictors (Box 1).

When predictors are independent, for instance in the

case of principal component regressions (Dormann et al.

2013), common effects are null and the sum of unique

effects equals the total variance of the dependent vari-

able that is explained by the model (model fit index).

However, when predictors show even low levels of

multicollinearity, common effects are usually non-null

and can show either positive or negative values. Posi-

tive common effects occur in the case of synergistic

association among variables. Situations where C is sub-

stantially larger than U indicate that a predictor, show-

ing significant contribution to the regression equation

(high beta weight), only contributes indirectly to the

dependent variable (or to model fit) because of its high

positive correlation with other predictors. On the oppo-

site, negative common effects are generally indicative of

suppression (Capraro & Capraro 2001; Kraha et al.

2012).

The notion of suppression is an important contribu-

tion of CA over other variance-partitioning procedures

(see Box 2): indeed, negative common effects are usu-

ally considered as embarrassing variation terms and

thus interpreted as zero (Legendre & Legendre 1998;

Peres-Neto et al. 2006). Suppression occurs in a variety

of situations, depending on multicollinearity patterns

among predictors (Lewis & Escobar 1986; Beckstead

2012). For instance, suppression may occur when corre-

lations among predictors are of opposite sign. In all

suppression situations, a predictor X1 (the suppressor),

sharing no or little variance with the response Y, puri-

fies the relationship between a predictor X2 and Y by

removing (or suppressing) the irrelevant variance of X2

on Y. As a result, the contribution of X2 to the model fit

is higher than would have been observed if X1 had not
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Box 1. Assessing variable importance in multivariate regression models

Here, we provide a brief description of the complementary indices that can be used to investigate the relative contri-

bution of each predictor to the multivariate regression effect (see Kraha et al. 2012; Nathans et al. 2012 for details).

Beta weights

Beta weights correspond to classical regression weights when variables are z-transformed (by subtracting the mean

and dividing by the standard deviation of the variable). Beta weights are thus comparable across various predictors.

In logistic regressions, we speak about semi-standardized beta weights as the dichotomous dependent variable cannot

be z-transformed. Beta weights quantify the change in the dependent variable (in standard deviation units) with a one

standard deviation change in a predictor, all other predictors being held constant. They are thus measures of the total

effect of a predictor on the dependent variable, accounting for the contribution of other predictors.

Zero-order (or bivariate) correlation coefficients

Zero-order correlation coefficients (also known as validity coefficients) range from �1 to 1 and represent the posi-

tive or negative linear (parametric Pearson’s r) or monotonous (rank-based Spearman’s q or Kendall’s s) relation-
ship between two variables. In multivariate procedures, zero-order correlation coefficients are measures of the

direct effect of a predictor on the dependent variable, without accounting for the contributions of other variables in

the model; when z-transformed predictors are independent, they are equivalent to beta weights b. A discrepancy

between zero-order correlation coefficients and beta weights is indicative of suppression.

Structure coefficients (see main text for details)

A structure coefficient rs is the zero-order Pearson’s correlation between a predictor and predicted values Ŷ of the

dependent variable Y (that is, rs ¼ rX�Ŷ). Structure coefficients are measures of the direct effect of a predictor on the

dependent variable, irrespective of the influence of other predictors in the model. When squared, structure coeffi-

cients represent the amount of variance in model fit that is accounted for by a single predictor. Note that, in linear

regressions, squared structure coefficients r2s may also be computed by dividing the squared zero-order Pearson’s

correlation between a predictor and the dependent variable by the model fit index R2 (that is, r2s ¼ r2X�Y=R
2). Struc-

ture coefficients may thus also be considered as rescaled validity coefficients (Courville & Thompson 2001). As pre-

viously, a discrepancy between structure coefficients and beta weights is indicative of suppression.

Product measures (or Pratt measures; Pratt 1987)

For a given predictor, product measure is the zero-order correlation coefficient multiplied by the corresponding

beta weight, thus reflecting in a single metric both direct and total effects of a predictor on the dependent variable.

The computation of product measures is a variance-partitioning procedure, the sum of the k product measures (for

k predictors) being equal to the model fit index. When compared to zero-order correlation coefficients and beta

weights, negative product measures may help identify suppression situations.

Relative weights (or relative importance weights)

A relative weights analysis is another variance-partitioning technique, minimizing (but not fully addressing) the

problem of multicollinearity among k predictors through the use of orthogonal principal components. Relative

weights are the proportionate contribution of each predictor to the overall model fit after (partially) correcting for

multicollinearity. Suppression situations may be suspected when the sum of the k relative weights is larger than

model fit index.

General dominance weights

General dominance analysis uses the results from an all-possible-subsets regression (with 2k�1 subset models) to

compute a set of k general dominance weights for a regression model containing k predictors. General dominance

weights can be used to rank predictors according to a dominance hierarchy: they indicate the average difference in

fit between all subset models of equal size that include a predictor and those that do not include it. As other
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been considered in the regression, but at the cost of a

spurious correlation between X1 and Y (Nimon & Reio

2011; Ray-Mukherjee et al. 2014). Suppression situations

are sometimes so complex that no predictor can be

identified as a specific suppressor variable (Lewis &

Escobar 1986): in that case, predictors act as partial

suppressors (Nimon 2010). Negative commonalities are

the amount of predictive power that would be lost by

variance-partitioning procedures, the sum of general dominance weights equals the model fit index. Other kinds of

dominance indices exist (complete and conditional dominance weights) that can also be used to identify suppres-

sion situations (Azen & Budescu 2003; Nathans et al. 2012).

Commonalities (see main text for details)

As general dominance weights, commonalities result from an all-possible-subsets regression (with 2k�1 subset

models; see Box 3), but there are 2k�1 commonality coefficients (rather than k), each one indicating the amount of

variance that a predictor set uniquely shares with the dependent variable. By decomposing model fit indices into

unique U and common (or shared) C variance components, CA helps identify the location and magnitude of multi-

collinearity as well as suppression situations. Note that CA encompasses several other indices, notably zero-order

Pearson’s correlation coefficients r and structure coefficients rs. Indeed, for a given predictor, T = U + C = r2 and

T=R2 ¼ r2=R2 ¼ r2s .

Box 2. Commonality coefficients in comparison with other regression-type metrics

Commonality analysis is similar to other variance-partitioning techniques in that it partitions the regression effect into

orthogonal nonoverlapping parts. Unlike product measures, relative weights or general dominance weights that parti-

tion the regression effect into k parts (Box 1), commonality analysis partitions the regression effect into 2k�1 parts,

where k equals the number of predictors in the regression equation (Box 3). Despite different analytical processes,

general dominance weights and relative weights usually produce similar results. Some researchers therefore prefer to

compute relative weights as they are less computationally burdensome than dominance analysis which demands an

all-possible-subsets regression. Product measures are similarly easy to compute; however, they are criticized in the lit-

erature as they can produce negative coefficients, which some may find counterintuitive as a measure of variance.

Among the variance-partitioning techniques reviewed, commonality analysis produces a more specific partitioning of

the regression effect than product measures, relative weights or general dominance weights. Like product measures,

commonality analysis may produce negative coefficients. While some researchers suggest these coefficients be inter-

preted as zero, Nimon & Oswald (2013) and others have suggested that negative commonality coefficients can be used

to identify the loci and magnitude of suppression. This is a unique advantage of commonality analysis over other vari-

ance-partitioning techniques. For example, while a negative product measure signals a variable as a potential suppres-

sor, product measures tell the researchers nothing about what variables are being suppressed. Similarly, by analysing

the pattern of conditional dominance weights, researchers may be able to identify a variable as a suppressor. How-

ever, as documented by Beckstead (2012), dominance analysis may not always reveal complex suppression effects.

Nor does dominance analysis provide information regarding the loci and magnitude of the suppression effect.

Note that commonality coefficients may also be used to derive squared validity and structure coefficients. Summing

all the commonality coefficients that involve a predictor X1 (e.g. UX1, CX1X2
, CX1X3

, CX1X2X3
) yields the per cent of vari-

ance that the predictor shares in common with the criterion (i.e. squared validity coefficient). Similarly, summing the

commonality coefficients that have been divided by the magnitude of the regression effect (e.g. multiple R2) for a

given predictor yields the amount of variance that the predictor has in common with Ŷ (i.e. squared structure coeffi-

cient). Like regression weights, commonality coefficients are considered measures of the total effect of an independent

variable (see LeBreton et al. 2004), as they both take into account all independent variables in their computation. While

regression weights indicate the amount of change in the criterion variable for each unit change in the independent var-

iable holding all other independent variables constant, commonality coefficients indicate the amount of variance each

variable set uniquely contributes to the regression effect. Note that in the case of perfect uncorrelated predictors, beta

weights and commonality analysis will produce identical results; the unique effects from commonality analysis will

be identical to the standardized regression weights, squared validity coefficients and squared structure coefficients.
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other predictors if the (partial) suppressor variable was

not considered in the regression model. Suppressor

variables may also be detected by comparing beta

weights b to structure coefficients rs. Situations where b
is far larger than rs or where both indices are of oppo-

site signs are indicative of suppression (Ray-Mukherjee

et al. 2014).

The following section illustrates how CA can assist

the interpretation of multivariate regressions and avoid

spurious biological conclusions. We used three simu-

lated genetic data sets so that there was no ambiguity

as to the drivers of the observed genetic patterns (Cush-

man & Landguth 2010; Epperson et al. 2010). In each

example, we investigated multicollinearity among pre-

dictors and performed multivariate regression along

with CA. Output parameters (zero-order correlations,

VIF, beta weights, structure and commonality coeffi-

cients) are reported and discussed in detail.

Interpreting commonality analyses

Simulated data

We first created two distinct artificial landscapes A and

B (Fig. 1, panels a1 and b1) of 128 9 128 pixels each. The

resolution (size of pixels) was arbitrarily set to 10 m.

Both landscapes had distinct configurations but the

same composition: a continuous feature f0 (e.g. topogra-

phy; Fig. 1, panels a2 and b2), three categorical land-

cover features f1 to f3 (e.g. woods, meadows and crops)

and one categorical linear feature f4 (e.g. a road; panels

a3 and b3). We then used CDPOP 1.2.11 (Landguth &

Cushman 2010) to simulate gene flow between 64 ran-

domly located populations of 30 individuals each,

according to the relative resistance of landscape features

to be crossed. We did not consider all features as being

resistant to dispersal: the true drivers of gene flow were

feature f0 in landscape A and features f0 to f3 in land-

scape B (Fig. 1; Table 1). In landscape A, feature f0 was

rescaled to range from 1 to 5 (Fig. 1, panel a2): the result-

ing resistance surface was used to compute pairwise

effective distances based on least-cost paths. In CDPOP,

travelled distances were drawn from a probability distri-

bution inversely proportional to a linear function, with

the maximal dispersal cost distance that may be trav-

elled onto this resistance surface (associated with a null

probability) set to 1500 m in data set I and 500 m in data

set II (Table 1). In landscape B, a first continuous resis-

tance surface was created by rescaling feature f0 to range

from 1 to 3 (Fig. 1, panel b2), while a second categorical

Box 3. Commonality coefficient formulae

For k predictors, there are 2k�1 commonality coefficients, each with a unique formula. In addition, the formulae for

calculating commonality coefficients are based on the number of predictors. Therefore, the commonality coefficients

formulae for two predictors will be different than the formulae, for example, for 3, 4, 5 or more predictors. While

formulae for calculating commonality coefficients have been published for 2, 3 and 4 predictors (see for example

Thompson 2006), Mood (1971) developed a general procedure that allows for developing commonality coefficient

formulae for any number of predictors.

In Mood’s procedure, (1�x) was used to represent variables in the common variance subset and (x) was used to

represent variables not in the common variance subset. By negating the product of the variables in the subset and

the variables not in the subset, deleting the �1 that may result from the expansion of the product and replacing x

with R2, Mood noted that the formula for computing any commonality coefficient can be derived (Nimon et al.

2008).

Take, for example, a regression model with five predictors. In such a model, there will be 31 (25�1) commonality

coefficients. To calculate the amount of variance that is uniquely common to variables f0, f1, and f3, the correspond-

ing commonality coefficient (Cf0f1f3 ) can be derived using Mood’s procedure, expanding the results, and substitut-

ing x for R2 as follows:

� ð1� f0Þð1� f1Þð1� f3Þf2f4 ¼
� ð1� f0 � f1 þ f0f1Þð1� f3Þf2f4 ¼
� ð1� f0 � f1 � f3 þ f0f1 þ f0f3 þ f1f3 � f0f1f3Þf2f4 ¼
� ðf2f4 � f0f2f4 � f1f2f4 � f2f3f4 þ f0f1f2f4 þ f0f2f3f4 þ f1f2f3f4 � f0f1f2f3f4Þ ¼
� f2f4 þ f0f2f4 þ f1f2f4 þ f2f3f4 � f0f1f2f4 � f0f2f3f4 � f1f2f3f4 þ f0f1f2f3f4 ¼
Cf0f1f3 ¼
� R2

f2f4
þ R2

f0f2f4
þ R2

f1f2f4
þ R2

f2f3f4
� R2

f0f1f2f4
� R2

f0f2f3f4
� R2

f1f2f3f4
þ R2

f0f1f2f3f4
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layer representing the three features f1, f2 and f3 was cre-

ated by assigning pixels with resistance values of 1, 2 or

3, respectively (Fig. 1, panel b3). Pixels associated with

the ‘blank’ feature f4 were assigned a value of 1, as this

linear feature was totally included within feature f1.

Both continuous and categorical layers were then

summed, and the resulting resistance surface rescaled to

range from 1 to 5, as in landscape A. This final layer

was finally used to compute pairwise effective distances

based on least-cost paths, and simulations were per-

formed with a maximal dispersal cost distance set to

1500 m (Table 1). In each case, CDPOP was run for 100

generations with 20 neutral loci of 20 alleles each (see

Appendix S1, Supporting information for details).

Genetic distances and spatial predictors

Pairwise genetic distances were computed between

populations using the Nei’s version of Cavalli-Sforza’s

chord distance Da (Nei et al. 1983), as it is not

contingent on any theoretical assumption. To compute

spatial predictors in landscapes A and B, a specific

layer was created for each landscape feature. Layers

F

F
F

f

F 1 3 1 2 3 1

Landscape B

F F F F
F
F –0.232
F 0.766 –0.469
F –0.042 –0.389 –0.369
f –0.059 0.242 –0.142 –0.089

–0.293
0.476
0.292

–0.045

0.665
Da-III

5.504
14.573
5.666

  1.072

6.625

VIF
Pearson's correlation matrix

F f f f
F
f 0.064
f 0.213 –0.347
f 0.202 –0.311 –0.452
f 0.301 –0.095 0.173 –0.066

0.193
0.161
0.041

–0.008

0.669
Da-I

0.089
0.199
0.050
0.409

0.677
Da-II

2.122
2.615
2.598

 1.165

1.657

VIF
Pearson's correlation matrix

F

f

f

f

f

1 5

Landscape A
(a1)

(a4)

(b1) (b2) (b3)

(b4)

(a2) (a3)

Fig. 1 Characteristics of landscapes A

and B. Panels a1 and b1: overview of each

landscape, combining both continuous

and categorical features. Populations are

indicated by red circles. Panels a2 and b2:

overview of continuous features f0. Pan-

els a3 and b3: overview of land-cover fea-

tures f1, f2, f3 and f4. Resistance values

assigned to these features when simulat-

ing genetic data are provided below

respective panels. Panels a4 and b4: VIF

for each predictor and Pearson’s correla-

tion matrices among variables (with Da-I,

Da-II and Da-III, respectively, indicating

dependent variables in data sets I, II and

III). For each landscape, the true drivers

of gene flow (features with non-null

resistance) are in capital letters (e.g. f1 in

landscape A but F1 in landscape B).

Table 1 Characteristics of the three illustrative data sets

Data set Landscape

True drivers of

gene flow

Maximal dispersal

distance (m)f0 f1 f2 f3 f4

I A 1500

II A 500

III B 1500

© 2014 John Wiley & Sons Ltd
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associated with categorical features (f1 to f4) were

binary, with pixels of value 1 for the considered feature

and 0 otherwise. We then overlaid a 32 9 32 pixel grid

on these layers and calculated the mean value of con-

tinuous feature f0 and the percentage of categorical fea-

tures f1 to f4 per blocks of 4 9 4 pixels (Balkenhol et al.

2014). These layers were finally rescaled to range from

1 to 100 and used in CIRCUITSCAPE 3.5.8 (McRae & Shah

2009) to compute pairwise effective distances between

populations. The reasoning for the systematic use of

feature density (or mean feature value) per square sur-

face as a proxy for matrix resistance was the following:

areas with high densities of unsuitable feature are

assumed to hinder dispersal because of higher physio-

logical cost and predatory risk (positive relationship

between feature density and genetic distances), while

areas with high densities of neutral or suitable feature

are not (null or negative relationship). Pairwise dis-

tances based on circuit theory being expressed in terms

of random walk probabilities (McRae 2006; Spear et al.

2010), we did not include Euclidean distances as an

additional explanatory variable (Garroway et al. 2011;

Peterman et al. 2014). All variables were z-transformed

(by subtracting the mean and dividing by the standard

deviation) for output parameter estimates to be compa-

rable (Schielzeth 2010).

MRDM and LRDM

When the maximal cost distance was set to 1500 m (data

sets I and III), genetic distances were approximately nor-

mally distributed (Fig. 2a–c), allowing the use of linear

regression such as MRDM (e.g. Braunisch et al. 2010; Blair

et al. 2013; Nanninga et al. 2014). MRDM are similar to

classical multiple ordinary least-square (OLS) regressions,

except that the significance of model fit (multivariate R2)

as well as the significance of beta weights b is assessed

through permutations of the dependent matrix (Legendre

et al. 1994). Linear MRDM and associated CA were,

respectively, conducted using packages ecodist (Goslee &

Urban 2007) and yhat (Nimon et al. 2013b) in R 3.1.0 (R

Development Core Team 2014) with the following full

model: Da = ∑(bi�fi). All significance levels were assessed

with 10 000 permutations after sequential Bonferroni cor-

rection (Holm 1979). Ninety-five per cent confidence inter-

vals around beta weights, structure coefficients and

commonalities were computed using a bootstrap proce-

dure, with 1000 replicates based on a random selection of

58 out of 64 populations without replacement (Peterman

et al. 2014). This approach allows assessing the robustness

of observed parameters to the random removal of a few

sampling points: asymmetrical confidence intervals (e.g.

Fig. 3) may result from multimodal distributions of
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Fig. 2 Distribution of the dependent variable Da in data sets I (a) and II (d). Histograms of studentized residuals resulting from

MRDM in data sets I (b) and II (e). Normal Q–Q plots of studentized residuals resulting from MRDM in data sets I (c) and II (f).
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metrics across bootstrap replicates, confirming that multi-

collinearity may vary with the spatial configuration of

sampled points. This bootstrap procedure was also used to

determine whether the observed differences between pairs

of metrics (beta weights and structure coefficients) were

robust to the removal of a few sampled points (Appendix

S2, Supporting information).

When the maximal cost distance was set to 500 m

(data set II), genetic distances showed a multimodal

distribution, thus violating the assumptions of normal-

ity of residuals in OLS regression (Fig. 2d–f). This kind

of distribution usually requires the use of nonparamet-

ric, rank-based regression methods, assessing the mono-

tonic rather than the linear relationships between the

dependent variable and predictors (Van Strien et al.

2012; Dormann et al. 2013; Balkenhol et al. 2014). How-

ever, as variance-partitioning procedures such as CA

cannot be applied in the case of nonparametric regres-

sions, we transformed all genetic distances into binary

variables and performed logistic regression on distance

matrices (LRDM). Multivariate logistic regressions are

used to predict the likelihood of a success (e.g. the

probability p̂ that Y = 1) given a set of predictors. When

the dependent variable Y is expressed as the log odds

of a success (logit transformation), the logistic regres-

sion equation is simply a linear combination of predic-

tors where semi-standardized beta weights b̂ are

estimated using maximum-likelihood procedures (Smith

& McKenna 2013). Odd-ratios w, that is, semi-standard-

ized beta weights raised to the exponent (W ¼ eb̂), can

then be used to evaluate the increase of the likelihood

of a success with a one standard deviation change in X.

Logistic regressions are uncommon in landscape genet-

ics (but see for instance Weigel et al. 2013) but can be

useful to handle nonlinear data. Using zero as a thresh-

old, z-transformed genetic distances were thus recoded

into binary data with 0 for pairs of individuals with

negative z-scores and 1 for pairs of individuals with

positive z-scores (‘success’ of being genetically dissimi-

lar). Logistic regression was then performed using the

glm function with a logit link in R 3.1.0, with all predic-

tors being included in the model. Semi-standardized

beta weights b̂ were computed following King (2007)

with the mean predicted probabilities as a reference

value. To evaluate overall model fit, we used the Nage-

lkerke’s Index as a pseudo-R2, with a range (from 0 to

1) identical to the range of OLS multiple R2 (Roberts &

Nimon 2012; Smith & McKenna 2013). Nagelkerke’s

Index was computed with the NagelkerkeR2 function in

package fmsb, while logistic CA was performed with

the cc4log function provided in Roberts & Nimon

(2012). Structure coefficients were not computed here,

as they are specific to linear regressions. Because binary

data came from pairwise genetic distances and thus

could not be considered as independent, significance

levels of model fit and predictors were estimated using

a randomization procedure similar to the one used in

MRDM (Legendre et al. 1994). Rows and columns of the

binary matrices were randomly permuted 10 000 times,

and logistic regressions were performed on each per-

muted matrix to create a theoretical distribution of

pseudo-R2 and beta weights b̂ under the null hypothe-

sis of random pairwise genetic distances. Observed

pseudo-R2 and b̂ were then compared to theoretical
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Fig. 3 Plots of beta weights b and

structure coefficients rs in data set I (a, b)

and data set III (c, d) with 95% bootstrap

confidence intervals computed on the

basis of 1000 replicates with a random

selection of 58 out of 64 populations

without replacement. Significant beta

weights after sequential Bonferroni cor-

rection are indicated by filled circles.
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distributions at a significance level of 0.05 with sequen-

tial Bonferroni correction (Holm 1979). As previously,

95% confidence intervals around commonalities were

computed using a bootstrap procedure, with 1000 repli-

cates based on a random selection of 58 out of 64 popu-

lations without replacement (Peterman et al. 2014).

First illustration: data set I

Absolute zero-order Pearson’s correlations among pre-

dictors in landscape A ranged from 0.064 to 0.452, while

VIF ranged from 1.165 to 2.61 (Fig. 1, panel a4). As

expected, predictors associated with the three predomi-

nant, and mutually exclusive, land-cover features (f1, f2
and f3) were negatively correlated and showed the high-

est VIF. Nonetheless, bivariate correlations and VIF

were below traditional thresholds (|r| < 0.7 and

VIF < 10, respectively), suggesting at first glance little

multicollinearity in this data set.

Multivariate regression model was significant and

explained 52.10% of variance in the dependent variable

(Table 2). Except f3, all predictors were significant after

sequential Bonferroni correction. Comparing absolute

values of b allowed ranking predictors from the most to

the least influent in the following order: f0, f4, f1, f2 and f3
(Fig. 3a), although the difference between b2 and b3 was

not robust to the random removal of a few sampling

points (Appendix S2, Supporting information). For

instance, the dependent variable increased by 0.721 stan-

dard deviation with a one standard deviation change in

f0, all other predictors being hold constant. The linear fea-

ture f4 was the only significant predictor responsible for a

decrease in genetic distances (b4 = �0.228). Most

researchers would content themselves with such results,

maybe looking for a rationale to explain how a linear fea-

ture such as roads (f4) could enhance gene flow. In our

simulations though, the continuous feature f0 was the

only driver of gene flow, and all other significant correla-

tions were thus spurious ones.

Examining structure (rs) and squared structure (r2s )

coefficients can help quantify the direct effect of predic-

tors on the dependent variable (Nathans et al. 2012).

The ranking of predictors based on absolute values of

structure coefficients, that is, rescaled zero-order corre-

lations (Box 1), diverged from the ranking based on

beta weights (Fig. 3b), with f4 actually showing negligi-

ble rs value (Table 2). Furthermore, pairwise differences

between rs2, rs3 and rs4 were not robust to the random

removal of a few sampling points (Appendix S2, Sup-

porting information). The actual direct contribution of f4
to model fit was null (r2s4 = 0), which in this case means

that a substantial proportion of the variance in one or

several other predictors was assigned to f4 in the pro-

cess of computing beta weights, specifically designating

it as a suppressor variable. Nevertheless, the spurious

effects associated with f1 and f2 could not be explained.

Structure coefficients indicate with no doubt that bio-

logical interpretations based only on b may be errone-

ous (Courville & Thompson 2001), despite low levels of

collinearity (VIF < 3), but they cannot inform about

which predictors jointly share variance in predicting the

dependent variable or in what quantity.

The actual synergistic or antagonistic processes oper-

ating among predictors can be assessed by CA. Figure 4

provides the 31 commonality coefficients, including

both unique and common effects. Commonalities indi-

cate the percentage of variance in the dependent vari-

able that is uniquely explained by each predictor

(unique effects) or set of predictors (common effects).

With CA being a variance-partitioning procedure, the

sum of commonalities equals the model fit index R2

(here, R2 = 0.521). %Total values are obtained by divid-

ing commonalities by the fit index: they sum to 100 and

represent the percentage of explained variance in model

fit. CA indices reported in Table 2 can be derived from

Fig. 4, by directly reading in the case of unique effects

U or by summing all commonalities involving a given

predictor in the case of common effects C. Total effects

Table 2 MRDM results in data set I. Typical MRDM results and additional parameters derived from CA: predictors (pred), model fit

index (multivariate R2; ***: P-value <0.001), beta weights b and P-values P, structure and squared structure coefficients (rs and r2s ),

and finally, unique, common and total contributions of predictors to the variance in dependent variable (U, C and T)

Pred Multiple R2 b P rs r2s U C T

F0

52.10%

***

0.721 <0.001 0.926 0.858 0.314 0.133 0.447

f1 0.138 <0.001 0.267 0.071 0.009 0.028 0.037

f2 0.075 0.008 0.223 0.050 0.002 0.024 0.026

f3 �0.044 0.103 0.056 0.003 0.001 0.001 0.002

f4 �0.228 <0.001 �0.011 <0.001 0.045 �0.045 <0.001

P-values in bold indicate significant predictors after sequential Bonferroni correction. Predictors in bold indicate main unique contrib-

utors to model fit according to CA (see text for details).
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T are obtained by summing U and C. Note that T

values may also be computed by squaring zero-order

correlations r (Fig. 1, panel a4), indicating that CA actu-

ally encompasses several informative diagnostic indices

(see Box 2).

The sum of all negative commonalities showed that

77.4% of the regression effect was caused by suppres-

sion. All predictors were associated with negative com-

monalities (Fig. 4), thus suggesting a complex

suppression situation in this data set (Lewis & Escobar

1986). The importance of f0 was confirmed, as this pre-

dictor showed the highest unique contribution U0 to the

variance in Da. Reported coefficients U0 are to be

interpreted as follows: the continuous feature f0
uniquely contributed to 31.4% of the total variance in

the dependent variable and to 60.27% of the 52.1% of

variance explained by the regression model. Unique

contributions of f1, f2 and f3 were actually negligible

(U < 1%). Positive second- and fourth-order commonali-

ties involving these predictors ([f0f1], [f0f2], [f0f3] and

[f0f1f2f3]) were partially (or almost totally) counterbal-

anced by third-order negative commonalities ([f0f1f2],

[f0f1f3] and [f0f2f3]; Fig. 4), resulting in positive sums C

of commonalities if f1 (C1 = 0.028) and f2 (C2 = 0.024),

and negligible one in f3 (C3 = 0.001; Table 2). All these

commonalities involved f0: predictors f1 and f2 thus only

contributed to the regression model because of their

resultant synergistic association with f0. Negative com-

monalities involving f1, f2 and f3 were produced because

correlations among land-cover predictors had opposite

signs (Fig. 1, panel a4): these predictors acted as partial

suppressors, suppressing irrelevant variance in f0,

which thus showed a larger beta weight b0 than if the

correlations had been in the same direction. Finally, the

unique contribution of f4 to the dependent variable

(U4 = 0.045) was almost totally counterbalanced by the

negative second-order commonality [f0f4] (�0.044;

Fig. 4), resulting in a null total contribution (T4 = 0;

Table 2). The predictor f4 was actually unrelated to the

dependent variable Da (r4 = �0.008) and acted as a sup-

pressor variable: about 4.5% of irrelevant variance in f0
was assigned to f4 in the process of computing beta

weights, increasing the overall model fit but also result-

ing in a significantly non-null value for b4.
To sum up, while the classical interpretation of beta

weights would have yielded erroneous conclusions, CA

correctly identified f0 as the true driver of gene flow.

Other significant predictors either acted as suppressor

(f4) or partial suppressors (f1 and f2), the latter indirectly

contributing to model fit through their synergistic

association with f0.

Second illustration: data set II

In the second data set, the exact same predictors were

used, but the dependent variable was computed in the

context of restricted dispersal (Table 1). The logistic

model was significant and accounted for 51.56% of

(pseudo-) variance in Da (Table 3). Three predictors

were significant after sequential Bonferroni correction:

f0, f3 and f4. Predictor f0 was identified as the main pre-

dictor (b̂0 = 0.445), with an odd-ratio w0 = 1.56. This

means that populations were 1.56 times more likely to

show high pairwise genetic distances (Da > 0) with a

one standard deviation change in f0 values. Predictor f4
was ranked second, with b̂4 = 0.218 and w4 = 1.24,

while predictor f3 showed a negative weight
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0.314 60.27
0.009 1.71
0.002 0.41
0.001 0.14
0.045 8.55
0.155 29.66
0.156 29.95
–0.002 –0.31
0.109 20.98
0.014 2.69
0.007 1.38
–0.044 –8.45
0.010 1.87
0.002 0.39
–0.001 –0.11
–0.115 –22.02
–0.108 –20.69
–0.106 –20.29
–0.006 –1.10
–0.009 –1.70
–0.002 –0.41
–0.001 –0.25
0.001 0.13
–0.004 –0.76
–0.005 –0.94
0.090 17.19
0.000 –0.01
0.004 0.70
0.004 0.85
0.003 0.48
–0.002 –0.35

0.0 0.2–0.2 0.4
0.521 100.00

(–0.403) (–77.39)

Fig. 4 The 31 commonality coefficients computed in data set I,

including both unique and common effects. Coefficients repre-

sent the percentage of variance explained in the dependent

variable Y by each set of predictors. Ninety-five per cent confi-

dence intervals were computed using a bootstrap procedure,

with 1000 replicates based on a random selection of 58 out of

64 populations without replacement. The sum of coefficients

equals the model fit index. %Total, summing to 100%, repre-

sents the percentage of variance explained in predicted values

Ŷ (that is, in model fit) by each set of predictors. In brackets:

percentage of variance explained in the dependent variable

(respectively, in model fit) that is due to suppression (sum of

all negative commonalities).
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(b̂3 = �0.122). This means that populations were more

likely to be genetically similar (w3 < 1) with a one

standard deviation change in f3 values (Fig. 5). This last

result was, however, inconsistent with the zero-order

correlation r3 = 0.05 (Fig. 1, panel a4) that indicated a

slightly positive relationship between f3 and untrans-

formed values of Da. Furthermore, the continuous fea-

ture f0 was actually the only true driver of gene flow in

landscape A.

CA allowed clarifying these results. The sum of all

negative commonalities showed that 42% of the regres-

sion effect was caused by suppression (Fig. 6). As previ-

ously, all predictors were associated with negative

commonalities (Fig. 6), thus suggesting a complex sup-

pression situation in this data set (Lewis & Escobar

1986). The importance of f0 was confirmed, as this pre-

dictor had the largest unique contribution to the vari-

ance in Da (U0 = 18.2%; Table 3) and accounted for

35.2% of the regression effect (Fig. 6). Predictor f3 was

involved in second-, third-, fourth- and fifth-order

non-null commonalities (Fig. 6) but was easily identi-

fied as a suppressor variable, as its unique contribution

U3 was almost totally counterbalanced by the sum of its

common contributions C3 (Table 3), thus providing a

better understanding of the inconsistency between a

Table 3 LRDM results in data set II. Typical LRDM results and additional parameters derived from CA: predictors (pred), model fit

index (Pseudo-R2; ***: P-value <0.001), semi-standardized beta weights b̂ (computed using the mean predicted probability of 0.663 as

a reference value), odd-ratios w and P-values P, and finally, unique, common and total contributions of predictors to the variance in

dependent variable (U, C and T)

Pred Pseudo-R2 b̂ w P U C T

F0

51.56%

***

0.445 1.560 <0.001 0.182 0.253 0.434

f1 0.022 1.022 0.297 <0.001 0.011 0.011

f2 0.037 1.038 0.187 0.001 0.036 0.037

f3 �0.122 0.886 0.001 0.013 �0.012 0.001

f4 0.218 1.244 <0.001 0.021 0.280 0.301

P-values in bold indicate significant predictors after sequential Bonferroni correction. Predictors in bold indicate main unique contrib-

utors to model fit according to CA (see text for details).
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Fig. 5 Predicted probability of success in function of each z-

transformed predictor in data set II using LRDM. Nonsignifi-

cant predictors are in dashed lines. The true driver of gene

flow (F0) is in capital letters.
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0.182 35.24
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0.001 0.23
0.013 2.55
0.021 4.13
0.023 4.40
0.017 3.35
0.000 –0.09
–0.010 –1.94
0.017 3.34
0.024 4.71
0.202 39.25
0.000 –0.08
0.000 0.09
0.005 0.94
–0.016 –3.01
–0.017 –3.36
–0.025 –4.83
–0.010 –1.98
0.047 9.18
0.080 15.53
0.001 0.22
0.033 6.42
–0.001 –0.17
0.012 2.32
0.015 2.97
–0.045 –8.75
–0.037 –7.10
–0.052 –10.16
–0.003 –0.54
0.036 7.05

Fig. 6 The 31 commonality coefficients computed in data set II,

including both unique and common effects. See legend in

Fig. 4.

© 2014 John Wiley & Sons Ltd

COMMONALITY ANALYSIS IN SPATIAL GENETICS 275



slightly positive zero-order correlation r3 and a negative

semi-standardized beta weight b̂3. While the unique

contribution of f4 was low (U4 = 0.02), the sum of all

commonalities involving f4 was high (C4 = 0.28), nota-

bly because of the second-order commonality [f0f4] that

accounted for 39.25% of model fit (Fig. 6). Predictor f4
was positively correlated with predictor f0 (r = 0.301;

Fig. 1, panel a4) and thus mainly contributed to the

regression model because of its high common contribu-

tion with f0. Finally, and as expected, nonsignificant

predictors f1 and f2 showed negligible unique contribu-

tions U and low common contributions C, the latter

resulting from a trade-off between positive third-order

commonalities ([f0f1f4] and [f0f2f4]) and negative third-

and fourth-order commonalities (Fig. 6). Note that

because it is involved in all the largest negative com-

monalities ([f0f1f2], [f0f1f3] and [f0f2f3]), predictor f0 may

also be considered as a partial suppressor. As previ-

ously, while the classical interpretation of semi-stan-

dardized beta weights and odd-ratios would have

yielded erroneous conclusions, CA correctly identified

f0 as the true driver of gene flow. Other significant

predictors either acted as suppressor (f3) or indirectly

contributed to model fit through a synergistic

association with f0 (f4).

Third illustration: data set III

Absolute zero-order Pearson’s correlations among pre-

dictors in landscape B ranged from 0.089 to 0.766, while

VIF ranged from 1.072 to 14.573 (Fig. 1, panel b4), sug-

gesting potential multicollinearity issues in this exam-

ple. The most problematic predictor was f2 (VIF > 10),

as it was highly correlated with f0 (r > 0.7; Fig. 1, panel

b4). This predictor would usually be excluded from the

model but was conserved here for illustration purpose.

As in landscape A, predictors associated with the three

predominant land-cover features (f1, f2 and f3) were neg-

atively correlated.

The linear model was significant and accounted for

61.58% of variance in Da (Table 4). Except for f0, all pre-

dictors showed positive and significant beta weights

after sequential Bonferroni correction. Comparing

absolute values of beta weights allowed ranking predic-

tors from the most to the least influent in the following

order: f2, f3, f1, f4 and f0 (Fig. 3c), although the difference

between b0 and b4 was not robust to the random

removal of a few sampling points (Appendix S2, Sup-

porting information). However, the ranking of predic-

tors based on beta weights was inconsistent with the

ranking based on structure coefficient rs (Fig. 3d).

Indeed, predictor f0, though nonsignificant, showed the

highest direct contribution to the dependent variable

(rs0 = 0.834), while f1 actually appeared negatively

correlated with Da (Table 4).

The sum of all negative commonalities indicated a

really complex suppression situation here, as 92.8% of

the regression effect was caused by suppression (Fig. 7).

In particular, negative commonalities identified sup-

pression involving predictors f0, f1, f2 and f3, through

second-order ([f1f2], [f1f3], [f2f3]) and third-order com-

monalities ([f0f1f2], [f0f1f3], [f0f2f3]). These negative com-

monalities were partially counterbalanced by positive

second-order ([f0f1], [f0f2], [f0f3]), third-order ([f1f2f3]) and

fourth-order commonalities ([f0f1f2f3]), resulting in posi-

tive common contributions to the dependent variable in

f0, f1 and f2 (C0 = 42.8%; C1 = 2.7%; C2 = 14.3%) and

negative common contribution in f3 (C3 = �6.6%;

Table 4). With such a negative common contribution

but at the same time a non-null total contribution to

model fit (T3 = 8.5%), predictor f3 was identified as a

partial suppressor. This partial suppression effect nota-

bly ensued from the specific pattern of bivariate correla-

tions in this data set, f3 being positively correlated with

Da but negatively correlated with all other predictors

(Fig. 1, panel b4). Predictor f1 may also be considered as

a partial suppressor variable: there was a mismatch in

the sign of beta weight b1 and structure coefficient rs1,

but the sum C of all commonalities involving f1 was still

positive (C1 = 0.027). The influence of these predictors

was thus to be interpreted with much caution. Never-

theless, a few conclusions could still be drawn from this

analysis. First, it is worth observing that unique contri-

butions allowed ranking land-cover predictors f1, f2 and

f3 in an order consistent with simulated process (that is,

f3 >f2 >f1; Table 4), although neither the magnitude nor

Table 4 MRDM results in data set III

Pred Multiple R2 b P rs r2s U C T

F0

61.58%

***

�0.019 0.644 0.834 0.696 <0.001 0.428 0.428

F1 0.568 <0.001 �0.373 0.139 0.059 0.027 0.086

F2 1.107 <0.001 0.607 0.368 0.084 0.143 0.227

F3 0.926 <0.001 0.372 0.138 0.151 �0.066 0.085

f4 0.056 <0.001 �0.057 0.003 0.003 �0.001 0.002

See legend in Table 2.
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the sign of reported beta weights could be fully trusted.

Second, the influence of predictor f4 on gene flow could

be immediately ruled out: although characterized by a

significant beta weight, f4 had both little unique and

common contributions to the dependent variable

(U4 = 0.003; C4 = �0.001; Table 4), resulting in a negligi-

ble total contribution to model fit (T4 = 0.2%), in accor-

dance with simulated process. Finally, although

nonsignificant, predictor f0 had actually the highest total

contribution to model fit (T0 = 42.8%). This contribution

was completely explained by common effects of f0 with

other predictors (C0 = 42.8%), especially through the

positive second-order commonality [f0f2] which

accounted for 66.24% of model fit (Fig. 7). Because of

high collinearity among these two predictors (r = 0.766;

Fig. 1, panel b4), the variance in f0 was mainly assigned

to f2 in the process of computing beta weights. Exclud-

ing f2 from the model made the percentage of suppres-

sion drop from 92.8% to <9% and allowed correctly

identifying the main contributors to genetic distances

while ruling out f4 (data not shown). But by doing so, f2

could obviously not be identified as one of the drivers

to gene flow.

Advantages of commonality analyses

As a preliminary remark, note that because of multicol-

linearity among spatial features, zero-order correlations

can be non-null despite no true causal relationship

between the dependent variable and spatial predictors

(e.g. f1 in data set I or f4 in data set II; Nathans et al.

2012), thus confirming the utility of multivariate proce-

dures over univariate ones in resistance model optimi-

zation (Balkenhol et al. 2009; Spear et al. 2010; Graves

et al. 2013). Whatever the model fit index used to iden-

tify the best resistance surface from a set of alternative

surfaces (e.g. Perez-Espona et al. 2008; Shirk et al. 2010;

Dudaniec et al. 2013; Peterman et al. 2014), multicollin-

earity among spatial features may indeed be responsible

for the selection of suboptimal or even spurious univar-

iate models (Spear et al. 2010). For instance, Perez-

Espona et al. (2008) found that inland lochs and rivers

might facilitate gene flow in Scottish red deers: this

result may be biologically realistic, but may also ensue

from artefactual correlations due to spatial multicollin-

earity among landscape features. However, the three

provided illustrations also confirmed that the typical

interpretation of multivariate regressions based on the

ranking of significant beta weights is flawed by even

weak levels of multicollinearity among predictors (Mac

Nally 2002; Dormann et al. 2013), with the risk of erro-

neous conclusions, misdirected research and inefficient

or counterproductive conservation measures. The inves-

tigation of commonalities can circumvent these flaws to

some extent and provide insightful information about

the relative influence of landscape predictors on the

dependent variable in direct gradient analyses.

First, CA can be used to clarify the relative impor-

tance of predictors in the case of synergistic association

among variables (Ray-Mukherjee et al. 2014). For

instance, f4 in data set II showed little unique contribu-

tion U to model fit, especially when compared with the

unique contribution of f0. The computation of the semi-

standardized beta weight in f4 was actually dictated by

collinearity between f4 and f0 so that b̂4 reflected the

indirect rather than the real contribution of f4 to model

fit. Similarly, f0 in data set III had negligible unique

contribution to model fit: this predictor mostly

explained variance in the dependent variable when in

synergistic association with other predictors. In both

cases, the classical interpretation of significant beta

weights was flawed by positive collinearity among pre-

dictors. In an empirical situation, that is, in the absence

of any information about potential drivers of gene flow,

deciding whether a predictor with little unique
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Fig. 7 The 31 commonality coefficients computed in data set III,

including both unique and common effects. See legend in Fig. 4.
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contribution is or is not responsible for the observed

biological response is left to the appreciation of investi-

gators. Disentangling the relative contribution of such

explanatory variables in a predictive perspective would

actually require replications in different multicollineari-

ty contexts (Anderson et al. 2010; Short Bull et al. 2011;

Prunier et al. 2013). Nevertheless, this ability of CA to

provide a clear quantification of unique contributions of

predictors to model fit is valuable for interpreting

results of multivariate regressions.

Second, CA can reveal spurious correlations that may

have gone unnoticed in the framework of a typical

interpretation of significant beta weights. The investiga-

tion of commonalities in data sets I and II confirmed

that suppression may occur despite moderate levels of

multicollinearity (Ray-Mukherjee et al. 2014). Research-

ers are thus probably often confronted to this kind of

spurious effects although they may not be aware that

they are dealing with a suppression situation (Lewis &

Escobar 1986). This is especially true when the sign and

the magnitude of beta weights make sense with regard

to biological expectations. Should this not be the case, a

convincing rationale is usually proposed to justify any

unexpected outcome (Graves et al. 2013). By fully clari-

fying how variables contribute to prediction, CA pro-

vides a way to identify suppressors and to foil spurious

correlations. Two predictors were identified as suppres-

sors in data sets I (f4) and II (f3). When significant, these

variables were thought to facilitate dispersal, although

they were not part of the simulating process. However,

the total contributions T of these two predictors, that is

the amount of explained variance in the dependent var-

iable irrespective of collinearity, were low, unique

effects being counterbalanced by their negative com-

monalities. Suppression situations are to be identified

for a proper interpretation of regression models, but

they are not necessarily to be avoided (Lewis & Escobar

1986; Pandey & Elliott 2010). Once spurious correlations

have been identified, suppression may eventually

improve the detectability of influential predictors by

removing the part of their variance that is irrelevant to

predict the dependent variable (Nimon & Reio 2011;

Ray-Mukherjee et al. 2014). It is yet essential to bear in

mind that although some variables may act as explicit

suppressors, suppression situations can also be particu-

larly complex (data set III; Lewis & Escobar 1986): the

interpretation of commonalities is thus always to be car-

ried out with much caution (Ray-Mukherjee et al. 2014).

Finally, and contrary to procedures such as stepwise

regression, CA is independent of variable order and

thus replicable for a given model (Lewis 2007;

Ray-Mukherjee et al. 2014). By allowing a thorough

understanding of the relative contribution of spatial

predictors to genetic variability, CA can help identify

the most parsimonious set of predictors from a given

full model (Kraha et al. 2012), thus making it a valuable

complementary tool to model selection procedures.

Limitations and future applications

CA appears as a promising procedure in spatial

genetics. However, this is not a panacea. First, although

investigating commonalities allow identifying the loca-

tion and magnitude of nonindependence among predic-

tors (Nimon 2010), it cannot solve multicollinearity

issues per se (Dormann et al. 2013). Indeed, CA does not

provide any corrected or weighted parameter that may

eventually be used in a predictive perspective. CA is

also limited to parametric models: although it is hith-

erto available for use with linear regressions, logistic

regressions, as well as mixed-effect models (Roberts &

Nimon 2012; Ray-Mukherjee et al. 2014), commonalities

cannot be interpreted in the context of nonlinear,

rank-based regressions. LRDM may sometimes consti-

tute an interesting alternative to nonparametric models

(for instance in the case of multimodal distributions; see

data set II), but may not properly represent all nonlin-

ear relationships.

Furthermore, the interpretation of CA becomes more

difficult as the number of predictors increases, because

the number of commonalities expands exponentially

with the number of predictors (Ray-Mukherjee et al.

2014; see Box 3). In our illustrations, we only consid-

ered a set of five predictors, a reasonable number when

considering current spatial genetic studies (Zeller et al.

2012). Nevertheless, the number of commonalities

would have increased from 31 to 63 with a single addi-

tional variable in full regression models. Although

interpreting and reporting commonalities for a higher

number of predictors may be highly informative (Na-

thans et al. 2012), the number of predictors may some-

times be too high or suppression situations too complex

for all explanatory variables to be conserved in the

regression model (e.g. data set III). CA thus does not

resolve the problem of variable preselection (Dormann

et al. 2013). Rather than using a predefined correlation

threshold to avoid multicollinearity, investigators

should investigate multicollinearity patterns and con-

sider both the ecology of studied species and local land-

scape characteristics to select a set of nonredundant and

biologically relevant predictors.

Finally, commonalities are specific to a given model,

because of particular patterns of bivariate correlations.

In a complex multicollinearity context, all predictors

may, to some extent, remove irrelevant variance from

some other variables (see Figs 4, 6 and 7; Lewis &

Escobar 1986) so that adding or removing predictors is

likely to modify commonalities, with the emergence of

© 2014 John Wiley & Sons Ltd
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new suppression situations. This issue has no conse-

quence on direct gradient analyses when they are per-

formed in an explanatory perspective as a single full

model is explored. In a predictive perspective though,

regressions are often performed on a set of nested or

alternative models and model fit indices are then com-

pared to identify the model structure showing the best

predictive power. As model fit indices are influenced

by suppression situations (Paulhus et al. 2004), suppres-

sors may be retained in the final best model, with the

risk of erroneous conclusions. Ideally, commonalities

should be systematically computed and thoroughly

inspected to identify, in each model, both suppressors

and main contributors to model fit (see Blair et al. 2013

for such a model selection procedure using VIF). This

framework may though be unrealistic when the number

of models is large, notably in resistance model optimi-

zation. As a consequence, CA cannot fully address the

issues described by Graves et al. (2013) about the cur-

rent low performance of predictive analyses in land-

scape genetics, although multicollinearity is in all

likelihood part of the problem. In model selection or

resistance model optimization, commonalities should at

least be investigated in the final best-fitted multivariate

model, to avoid any erroneous interpretation of multi-

variate regressions. When models are nested, CA may

also be used as a preliminary tool to assess commonali-

ties in the full model, providing initial indications as to

the relative contributions of predictors to the dependent

variable.

We illustrated the use of CA in spatial genetics and

showed that an in-depth understanding of multivariate

regression results could be achieved when local collin-

earity structure was taken into account. Providing infor-

mation about the unique contribution of predictors to

genetic variability while easily revealing spurious corre-

lations, CA is a promising tool in spatial genetics, espe-

cially as commonalities are easily computed in linear

and logistic regressions, with functions and scripts now

available for use in various statistical softwares such as

R, SPSS or SAS (Nimon et al. 2008, 2010; Nimon 2010; Kraha

et al. 2012; Roberts & Nimon 2012). CA may assume

even greater value if used to assist the interpretation of

regressions on data collected in different multicollineari-

ty contexts, that is, coming from distinct spatial or tem-

poral replicates (Anderson et al. 2010; Short Bull et al.

2011; Dormann et al. 2013), or on the contrary to assist

the interpretation of regressions on data collected in dis-

tinct but co-occurring species (Storfer et al. 2010). CA

may also facilitate the comparison of empirical and sim-

ulated data in the framework of landscape genetic

model validation (Shirk et al. 2012). We thus strongly

urge spatial geneticists to systematically investigate com-

monalities in explanatory full models or in best-fitted

predictive models. Further methodological develop-

ments are now needed to determine how CA could be

used to enhance the reliability of resistance model opti-

mization procedures in spatial genetics. A particular

attention should also be paid to the validity of regres-

sion CA in the specific framework of maximum-likeli-

hood population-effects (MLPE) mixed models (Clarke

et al. 2002), an increasingly used statistical tool in spatial

genetics (Selkoe et al. 2010; Van Strien et al. 2012; Prunier

et al. 2013). Finally, future studies should be conducted

to assess how the location and magnitude of multicollin-

earity among predictors (including both synergistic asso-

ciations and suppression situations) could be

investigated using current variation-partitioning proce-

dures in the framework of constrained ordination tech-

niques (Borcard et al. 1992; Peres-Neto et al. 2006).
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