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Abstract

Genetic data are increasingly used in landscape ecology for the indirect assessment of

functional connectivity, that is, the permeability of landscape to movements of organ-

isms. Among available tools, matrix correlation analyses (e.g. Mantel tests or mixed

models) are commonly used to test for the relationship between pairwise genetic dis-

tances and movement costs incurred by dispersing individuals. When organisms are

spatially clustered, a population-based sampling scheme (PSS) is usually performed,

so that a large number of genotypes can be used to compute pairwise genetic distances

on the basis of allelic frequencies. Because of financial constraints, this kind of sam-

pling scheme implies a drastic reduction in the number of sampled aggregates, thereby

reducing sampling coverage at the landscape level. We used matrix correlation analy-

ses on simulated and empirical genetic data sets to investigate the efficiency of an

individual-based sampling scheme (ISS) in detecting isolation-by-distance and isola-

tion-by-barrier patterns. Provided that pseudo-replication issues are taken into account

(e.g. through restricted permutations in Mantel tests), we showed that the use of inter-

individual measures of genotypic dissimilarity may efficiently replace interpopulation

measures of genetic differentiation: the sampling of only three or four individuals per

aggregate may be sufficient to efficiently detect specific genetic patterns in most situa-

tions. The ISS proved to be a promising methodological alternative to the more con-

ventional PSS, offering much flexibility in the spatial design of sampling schemes and

ensuring an optimal representativeness of landscape heterogeneity in data, with few

aggregates left unsampled. Each strategy offering specific advantages, a combined use

of both sampling schemes is discussed.
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Introduction

In the context of accelerating landscape fragmentation

worldwide, the conservation of wildlife populations

implies a better understanding of the movements of
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individuals and genes across landscapes (Cushman

2006; Safner et al. 2011a). Landscape genetics has now

emerged as an efficient approach to assessing the influ-

ence of landscape on gene exchanges among organisms:

genetic data are collected across landscapes and then

analysed to infer spatial genetic patterns considering

various landscape features (Manel et al. 2003; Segelbach-

er et al. 2010).

Several authors recently highlighted the importance

of sampling design in landscape genetic studies (Sch-

wartz & McKelvey 2009; Anderson et al. 2010). The

spatial distribution of collected genotypes, particularly

the extent of the study area and the interval (or lag dis-

tance) between sampling sites, should coincide with the

scale of spatial processes known to drive genetic pat-

terns (Anderson et al. 2010; Cushman & Landguth

2010a), namely isolation-by-distance (IBD), isolation-by-

barriers (IBB) and isolation-by-landscape resistance

(IBR), to ensure an optimal coverage of landscape heter-

ogeneity. This prerequisite may be easily met when

studying continuously distributed organisms: with only

n = 1 collected genotype per spot but with a large num-

ber P of sampling points, the individual-based sampling

scheme ISS allows an optimal representativeness of

landscape heterogeneity in data. On the other hand,

when individuals are spatially clumped (e.g. pond-

breeding amphibians), each aggregate is most often

sampled and treated as a discrete population, following

a conventional population-based sampling scheme PSS

(Funk et al. 2005; Goldberg & Waits 2010): the number

n of collected genotypes per aggregate is generally >20
(ideally 50; Kalinowski 2005; Broquet & Petit 2009),

enabling the estimation of unbiased allelic frequencies.

This widespread approach stems from the predomi-

nance of the metapopulation paradigm (Olivieri et al.

1995; Hanski 1999) and theoretical models such as

Wright’s island model (1931), assuming restricted gene

flow among local populations and extinction–recolon-

ization events (Harrison 1991): in such models, each

aggregate is presumed to constitute a distinct popula-

tion. However, except for a few species, the relevancy

of this paradigm to terrestrial landscapes is quite ques-

tionable (Baguette 2004). Indeed, many species tend to

follow a patchy population model, with individuals dis-

tributed in spatially scattered aggregates and exhibiting

higher dispersal rates than expected from the metapop-

ulation paradigm (Harrison 1991; Smith & Green 2005;

Fedy et al. 2008; Mayer et al. 2009). In such cases, the

PSS may lead to potential bias due to the challenging

delineation of putative population boundaries (Manel

et al. 2003). Furthermore, the decrease in P in favour of

n due to financial constraints has a direct impact on the

sampling coverage of landscape heterogeneity: the PSS

involves either a drastic reduction in the extent of the

study area or an increase in the distance between sam-

pled points, leaving many aggregates unsampled

(‘ghosts’; Beerli 2004; Broquet & Petit 2009; Lowe &

Allendorf 2010).

Ideally, clumped organisms should be sampled fol-

lowing an ISS, the number n of collected genotypes per

aggregate being chosen so as to optimally represent the

local genetic characteristics of each aggregate (‘genetic

sampling effort’) while allowing a sufficient number P

of aggregates to be sampled (‘spatial sampling effort’).

Though suggested for years (Manel et al. 2003), this

kind of sampling scheme is still particularly uncommon

in empirical studies (but see Austin et al. 2011). Even

though overlay methods (such as clustering algorithms;

Pritchard et al. 2000; Chen et al. 2007; Jombart et al.

2008) usually rest upon individual-based multilocus

genotypic data and are not contingent on the use of a

PSS, they are most often envisioned alongside correla-

tive analyses (Mantel 1967; Cushman et al. 2006) that

are traditionally applied to interpopulation genetic

distances based on allelic frequencies (Wright 1951;

Cavalli-Sforza & Edwards 1967; Nei et al. 1983; Weir &

Cockerham 1984; Ruzzante 1998).

Investigating the efficiency of an ISS compared with a

PSS to detect specific genetic patterns using correlative

analyses, we first asked whether interindividual mea-

sures of genotypic dissimilarity (a proxy assessment of

genetic relatedness) may efficiently replace interpopula-

tion genetic distances based on allelic frequencies. Sec-

ond, we investigated the trade-off between ‘genetic

sampling effort’ (increasing n) and ‘spatial sampling

effort’ (increasing P) to characterize an individual-based

optimal sampling scheme, optimizing the representa-

tiveness of both local genetic characteristics and land-

scape heterogeneity. In most landscape genetic studies,

IBD is regarded as the null hypothesis, that is, as the

standard process driving genetic differentiation among

individuals or populations (e.g. Broquet et al. 2006;

Emaresi et al. 2011). Competing hypotheses, such as IBB

or IBR models, are then proposed to determine whether

adding landscape variables may improve the predictive

power of the standard IBD model (e.g. Cushman et al.

2006; Goldberg & Waits 2010). Using simulated multilo-

cus genotypic data, we thus focused on the efficiency of

the ISS in detecting IBD as well as IBB, a simple but

common competing hypothesis (Cushman et al. 2006;

Landguth et al. 2010; Safner et al. 2011b). In the case of

IBB, we also examined how the efficiency of an ISS

could be enhanced by concentrating the spatial sam-

pling effort on the direct vicinity of the hypothetical

barrier and leaving no unsampled aggregates, that is,

using a targeted rather than a random sampling scheme

(Anderson et al. 2010). IBD and IBB detection analyses

were performed both in an ‘ideal’ homogeneous
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landscape context and in a more realistic heterogeneous

landscape context (IBR), as the spatially heterogeneous

viscosity resulting from IBR might alter the detection

power of both IBD and IBB. To this end, we used a real

topographic map to simulate spatial heterogeneity in

dispersal costs, as gradient surfaces are known to

adequately represent continuous spatial processes such

as dispersal (Cushman & Landguth 2010a). To illustrate

the relevance of our simulation results, we also investi-

gated the relative performance of both sampling

schemes at detecting IBD patterns using an empirical

data set on the alpine newt Ichthyosaura alpestris, a Euro-

pean pond-breeding amphibian.

Material and methods

Simulated data sets

Simulations were performed to test the ability of vari-

ous sampling procedures to detect significant genetic

patterns in patchy populations under different geneflow

regimes. For this purpose, we used CDPOP (Landguth

& Cushman 2010) to simulate over 100 nonoverlapping

generations the genetic differentiation among 160 popu-

lations (referred to as ‘aggregates’) randomly placed in

a 19 9 22 km area (Fig. 1). The maximal Euclidean dis-

tance between pairwise aggregates was 22 946 m; the

mean distance between neighbouring aggregates was

1685 � 587 m according to a Delaunay triangulation.

Each aggregate was initiated with 30 individuals and

kept at a constant size over generations. Genetic poly-

morphism was set to 10 microsatellite loci and 10 alleles

per locus, genotypes being randomly assigned at the

beginning of simulations (mean HO: 0.90). The mutation

rate was set to zero, as in Cushman & Landguth

(2010b). Multiple mating was only allowed for males,

and the litter size of paired animals was drawn accord-

ing to a Poisson distribution with the mean set to three.

Offspring sex was randomly assigned following a bino-

mial distribution and an unbiased sex ratio. Dispersal

was allowed only during the juvenile stage, and the dis-

persal distance of juveniles was drawn from a probabil-

ity distribution inversely proportional to a linear

function, with Dmax the maximal dispersal cost distance

that may be travelled (associated with a null probabil-

ity; Landguth & Cushman 2010). Dmax was fixed at

10%, 20% and 30% of the maximal Euclidean distance

between aggregates (22 946 m) to simulate three levels

of dispersal range (Low, Medium and High).

Cost distances were first based on Euclidean dis-

tances between pairwise aggregates, resulting in three

data sets with low interaggregate dispersal (DLow),

medium interaggregate dispersal (DMedium) and high

interaggregate dispersal (DHigh; see Table 1). Prelimin-

ary analyses showed that no genetic pattern could ever

be detected for Dmax ≤ 5%, due to an excessive genetic

drift, and for Dmax ≥ 35%, due to an excessive homoge-

nization of genotypes among aggregates (data not

shown). Our simulated data sets thus covered a rele-

vant range of geneflow regimes in patchy populations.

All the tests for IBD detection were performed at the

20th generation, spatial genetic structure being at quasi-

equilibrium in all data sets (see Appendix S1, Support-

ing information).

To investigate the efficiency of the various sampling

procedures to detect a recent barrier to dispersal, we

simulated three new data sets (DLow + barrier,

DMedium + barrier and DHigh + barrier) by placing an

impermeable barrier to dispersal at the 20th generation,

which segregated individuals into two sets of 80 aggre-

gates. All the tests for IBB detection were realized at

the 30th generation.

To test for the efficiency of an ISS at detecting IBD

and IBB patterns in an IBR context, cost distances were

also defined according to least-cost-paths computed

between pairwise aggregates, resulting in six additional

data sets (DLow + IBR, DMedium + IBR, DHigh + IBR and

DLow + barrier + IBR, DMedium + barrier + IBR and

DHigh + barrier + IBR). We used the MATLAB software-

coding environment (Mathworks, Inc.) to compute

least-cost-paths over a real gradient surface depicting

slope (percent slope ranging from 0% to 72%; Fig. 1).

Grid cell values, representing the cost of movement

through each pixel, were parameterized according to

Fig. 1 Random localization of the 160 aggregates of 30 individ-

uals, used to simulate genetic exchanges with CDPOP (Land-

guth & Cushman 2010). The barrier (black line) segregates

individuals in two sets of 80 aggregates. Black triangles stand

for aggregates located at less than 3000 m from the barrier.

© 2013 John Wiley & Sons Ltd
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the following linear function: y = (2/72)x + 1. Resulting

grid cell values ranged from 1 to 3. Preliminary analy-

ses showed that no genetic pattern could ever be

detected for harsher viscosity (e.g. grid cell values rang-

ing from 1 to 5), because of excessive genetic drift. The

addition of spatially heterogeneous viscosity may lead

to a slight decrease in dispersal range along with

uneven aggregate accessibility (‘spatial noise’) due to

specific landscape configuration.

Sampling procedures

For each simulated data set, we designed 110 random

sampling procedures depending on both spatial and

genetic sampling efforts. The spatial sampling effort

was defined as the number P of sampled aggregates,

with P ranging from 10 to 100: in IBD data sets, P

aggregates were randomly selected across the land-

scape, while in IBB data sets, P/2 aggregates were ran-

domly selected on either side of the barrier. The genetic

sampling effort was defined as the number n of ran-

domly sampled individuals per aggregate, with n rang-

ing from 1 to 10 (ISS) or n = 20 (conventional PSS). For

each IBB data set, we also designed a targeted sampling

scheme, considering only the P = 52 aggregates located

at less than 3000 m from the barrier (Fig. 1).

Genetic distances

For each sampling procedure, we computed a genetic

distance matrix, a Euclidean distance matrix and, in IBB

data sets, an effective distance matrix. To compute

genetic distance matrices, we used either interindividual

genetic distances (for n ≤ 10 and n = 20) or interpopula-

tion genetic distances (only for n = 20). Interindividual

genetic distances were based on the Bray–Curtis percent-

age dissimilarity measure (Bc; Legendre & Legendre

1998). Bc is logically related to the shared allele distance

(DSA; Bowcock et al. 1994), but is directly calculated from

pairwise allele frequency differences, rather than from

the proportion of alleles not shared between individuals.

As in Cushman et al. (2006), this metric was also highly

correlated with the ar metric (Rousset 2000; see Appendix

S2, Supporting information) and was thus preferred for

programming convenience. Interpopulation genetic dis-

tances were based on two common measures of genetic

differentiation using allelic frequencies: Rousset’s linear-

ized FST (FST/(1�FST) (hereafter, denoted simply as FST;

Rousset 1997), relying on the balance of gene flow and

drift, and Nei’s version of Cavalli-Sforza’s chord distance

Da (Nei et al. 1983), not contingent on any theoretical

assumption. To compute effective distance matrices, dis-

tances were set to 0 when two sampled aggregates were

located on the same side of the barrier and to 1 when they

were separated by the barrier (Epps et al. 2005).

Matrix correlation analyses

We based our statistical approach on matrix correlation

analyses using simple and partial Mantel tests (Mantel

1967; Smouse et al. 1986; Legendre & Fortin 2010).

Although the effectiveness of this statistical tool is

questionable when used for model selection (Cushman

et al. 2013; Graves et al. 2013), Mantel tests are suitable for

IBD detection in the case of genetic mutation–migration–

drift equilibrium (Guillot & Rousset 2013) and for IBB

Table 1 Characteristics of simulated data sets. The maximal dispersal distance Dmax was based on the homogeneous landscape and

was defined as a proportion of the maximal Euclidean distance between pairwise aggregates (22 946 m). The resulting mean dis-

persal distances are to be compared with the mean Euclidean distance between neighbouring aggregates (1685 � 587 m according to

a Delaunay triangulation): the mean dispersal distances were lower in Low data sets, higher in High data sets and in a similar range

of values in Medium data sets. Due to topography, the mean dispersal distances were slightly lower in IBR data sets than in data

sets based on the homogeneous landscape

Landscape Data set Dmax (%) Mean dispersal distance (m)

Homogeneous DLow

DLow + barrier

2294.6 (10) 848

DMedium

DMedium + barrier

4589.2 (20) 2071

DHigh

DHigh + barrier

6883.8 (30) 3018

Heterogeneous (IBR) DLow + IBR

DLow + barrier + IBR

2294.6 (10) 671

DMedium + IBR

DMedium + barrier + IBR

4589.2 (20) 1757

DHigh + IBR

DHigh + barrier + IBR

6883.8 (30) 2707
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detection in the case of a total barrier to gene flow

(Jaqui�ery et al. 2011; Graves et al. 2013; see Appendix S3,

Supporting information). Usually, the Mantel statistic is

tested by standard matrix permutations, that is, by ran-

domly permuting the objects of one of the matrices

(Legendre 2000). However, as soon as pairwise aggre-

gates are associated with more than one distance mea-

sure, that is, when computing interindividual genetic

distances with more than one sampled genotype per

aggregate (n > 1), Mantel tests are to be performed with

restricted permutations, as pseudo-replication issues

may arise when clumped genotypes are considered inde-

pendent. Indeed, restricted permutations will preserve

the correlation among individuals belonging to the same

aggregate (H0: independence of aggregates) while stan-

dard permutations will dismantle the internal structure

of aggregates by considering each individual as an inde-

pendent object (H0: independence of individuals). In

restricted permutations, permuted objects are thus the

aggregates (i.e. the P blocks of n individuals), rather than

the individuals (Efron & Tibshirani 1993; Manly 2007).

Ideally, the number n of sampled individuals per aggre-

gate should be kept balanced from one aggregate to

another to avoid systematic sampling bias; however,

when randomly distributed through space, a slightly

unbalanced sampling of genotypes is unlikely to influ-

ence the relevancy of matrix correlation analyses (see

Appendix S4, Supporting information).

In IBD detection, each genetic distance matrix was

compared to the corresponding pairwise Euclidean

distance matrix using a simple Mantel test with 5000

standard or restricted permutations. In IBB detection,

each genetic distance matrix was compared to the corre-

sponding effective distance matrix, after controlling for

the effect of the Euclidian distance matrix, using partial

Mantel tests with 5000 standard or restricted permuta-

tions. Partial Mantel tests were conducted by permuting

residuals of genetic distances over Euclidean distances

(null model IBD), as advised in Legendre (2000). When

using restricted permutations, all within-population dis-

tances (that is genetic, Euclidean and effective distances

between individuals from a same aggregate) were sys-

tematically removed from linearized semi-matrices, to fit

with the calculation of Mantel statistics in conventional

population-based approaches. All continuous variables

(genetic and Euclidean distances) were log-transformed

following the D = ln(d + 1) formula and standardized to

meet linearity assumptions.

Each process (sampling genotypes, computing dis-

tance matrices and running Mantel tests) was repeated

100 times: a sampling procedure was considered effi-

cient to detect a genetic pattern when at least 95% of

repetitions led to a significant Mantel test (P-value

≤0.05). This approach allowed the visualization of the

most parsimonious sampling procedures along an opti-

mal detection threshold, defined as the minimum num-

ber nP of genotypes required to detect a significant

genetic structure. Optimal detection thresholds were

used to compare interindividual and interpopulation

measures of genetic distances in PSSs (n = 20) and to

investigate the trade-off between genetic and spatial

sampling efforts in ISSs (n ≤ 10).

All operations (sampling aggregates and individuals,

computing genetic, Euclidian and effective distances

and running Mantel tests with standard or restricted

permutations) were automated in the MATLAB software-

coding environment (Mathworks, Inc.). FST measures

were calculated as in Fstat (Goudet 2001), following

Weir & Cockerham (1984), and then linearized follow-

ing Rousset (1997). Da measures were calculated as in

Genetix 4.03 (Belkhir et al. 2004). We checked the valid-

ity of MATLAB scripts by comparing FST and Da measures

in a few situations with FSTAT and Genetix 4.03 outputs,

respectively, and Mantel correlation coefficients (r) and

P-values obtained from standard permutations with ZT

(Bonnet & Van de Peer 2002) outputs.

The Matlab script for simple and partial Mantel

tests with restricted permutations is provided in

Appendix S5 (Supporting information). Any further

updates may be available at the following address:

[http://www.jeromeprunier.eg2.fr/5.html]. A free soft-

ware-efficient C implementation is also available at the

following address: [http://liris.cnrs.fr/serge.fenet/

Recherche/blockBasedMantelTest].

Empirical data set with both an ISS and a PSS in the
alpine newt

The alpine newt (I. alpestris) is a widespread pond-

breeding amphibian in northeastern France. This species

benefits from extensive livestock farming, which allows

the preservation of many artificial or natural ponds in

pastures. It may be highly nomadic (Perret et al. 2003),

with high gene flow and low genetic differentiation

among subpopulations (Emaresi et al. 2011), suggesting

a patchy population model. To compare the efficiency

of various sampling procedures in detecting a signifi-

cant genetic structure in this species, genetic data were

collected during the 2010 breeding season according to

both an ISS and a PSS in France (46.51°N, 5.17°E), in an

area of approximately 20 9 25 km (Fig. 2). We pros-

pected a total of 223 aquatic sites (e.g. artificial or natu-

ral ponds, flooded ruts, swamps, hereafter denoted as

‘aggregates’). Each aggregate was prospected with a dip

net for 30–60 mins (depending on site size and configu-

ration) or until at least two alpine newts (a male and a

female) were captured. Alpine newts were detected in

78 aggregates. Only six aggregates allowed the capture

© 2013 John Wiley & Sons Ltd
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of at least 20 individuals: they were thus sampled

following a conventional PSS with at least n = 23 sam-

pled individuals (P = 6, N = 159 genotypes, Euclidean

distance between pairwise aggregates ranging from

4168 m to 22 244 m; P1–P6 in Fig. 2). Only one individ-

ual per sex was sampled in the 72 other aggregates

(ISS, n ≤ 2, N = 125 genotypes, Euclidean distance

between pairwise aggregates ranging from 209 m to

24 878 m). Nondestructive genetic samples were taken

from each captured individual, using nonsterile buccal

swabs (Broquet et al. 2007). DNA extraction, PCR ampli-

fications and genotyping were performed using 12

microsatellite loci without null alleles (Table 2), follow-

ing Prunier et al. (2012).

In the case of the PSS (P = 6), we computed two inter-

population genetic distance matrices using FST and Da

and an interindividual genetic distance matrix using Bc;

in the case of the ISS (P = 72), we only computed an

interindividual genetic distance matrix using Bc. These

matrices were used in Matlab to perform spatial auto-

correlation analyses through nondirectional Mantel cor-

relograms (Smouse & Peakall 1999; Borcard & Legendre

2012), to determine the scale at which IBD occurred in

this data set (Epperson 2003). For this purpose, Euclid-

ean distance classes were defined every 5000 m, so that

each distance class included at least one pair of aggre-

gates, resulting in five binary matrices representing the

membership of individuals or populations to the dis-

tance class being tested (with 0 for pairs belonging to

the same distance class and 1 otherwise). With 72 sam-

pled aggregates ensuring an optimal spatial coverage of

the study area, the ISS allowed spatial autocorrelation

analysis to be performed at a finer resolution: distance

classes were thus also defined every 2500 m, resulting

in 10 binary matrices. Each binary matrix was compared

with the related genetic distance matrix using a simple

Mantel test with 1000 standard or restricted permuta-

tions. We then plotted the Mantel correlation values

over distance classes, with a 95% confidence interval

determined by bootstrap resampling (1000 iterations).

To test for the significance of each autocorrelogram,

genetic and related Euclidean distance matrices were

also used to perform simple Mantel tests with 9999 stan-

dard or restricted permutations over whole data.

Results

Relative performance of interindividual and
interpopulation genetic distances

Whatever the spatial genetic pattern (IBD or IBB) and the

level of spatial heterogeneity (with or without IBR), the

use of metrics based on allelic frequencies in a PSS (Da

and FST, n = 20) led to very similar optimal detection

thresholds (Figs 3 and 4). The minimum number nP of

genotypes required to detect significant IBD patterns

increased with the increase in interpatch movements

(from DLow to DHigh) and was always slightly lower in

IBR data sets. On the contrary, the minimum number nP

of genotypes required to detect significant IBB patterns

decreased with the increase in interpatch movements

(from DLow + barrier to DHigh + barrier) and was always

slightly higher in IBR data sets. No IBB pattern was ever

detected in data sets with low interaggregate dispersal

(DLow + barrier and DLow + barrier + IBR).

When based on exactly the same genetic data

(n = 20), measures of relatedness between individuals

(Bc) performed roughly as well as metrics based on alle-

lic frequencies in all IBD and IBB situations. Interindi-

vidual genetic distances, though nonsignificant, led to

better IBB detection than metrics based on allelic

frequencies in DLow + barrier data set.

Fig. 2 Localization of alpine newts’ geno-

types in Burgundy, France (46.51°N,

5.17°E). Black squares stand for aggre-

gates sampled following a PSS (n ≥ 23).

© 2013 John Wiley & Sons Ltd
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Table 2 Main characteristics of empirical genetic data in the alpine newt Ichthyosaura alpestris. For each locus (Garner et al. 2003;

Prunier et al. 2012), number of alleles (A; in brackets, effective number of alleles), expected and observed heterozygosity (HE and HO)

are given for the six aggregates that were sampled following a conventional PSS (P1–P6, N ranging from 23 to 30) and for the 72

aggregates that were sampled following an ISS. In the latter case, the N = 125 genotypes were pooled in a unique cluster (Ind)

Clusters N A HE HO A HO HE

CopTa1 (Prunier et al. 2012) CopTa11 (Prunier et al. 2012)

P1 29 3 0.572 0.552 6 0.691 0.759

P2 25 3 0.541 0.640 7 0.673 0.760

P3 28 3 0.614 0.714 5 0.745 0.821

P4 23 3 0.577 0.522 6 0.736 0.739

P5 24 3 0.430 0.417 4 0.741 0.708

P6 30 3 0.581 0.467 7 0.695 0.600

Ind 125 3 0.573 0.616 9 0.751 0.736

Total 284 3 (3.00) 9 (7.25)

CopTa2 (Prunier et al. 2012) CopTa12 (Prunier et al. 2012)

P1 29 3 0.673 0.586 3 0.346 0.345

P2 25 3 0.615 0.800 2 0.150 0.160

P3 28 3 0.662 0.786 2 0.195 0.214

P4 23 3 0.598 0.478 2 0.496 0.478

P5 24 4 0.691 0.542 2 0.467 0.458

P6 30 3 0.608 0.733 2 0.440 0.500

Ind 125 3 0.627 0.576 3 53.803 53.000

Total 284 4 (3.08) 3 (2.54)

CopTa3 (Prunier et al. 2012) CopTa13 (Prunier et al. 2012)

P1 29 7 0.755 0.759 3 0.522 0.552

P2 25 7 0.681 0.640 4 0.543 0.480

P3 28 6 0.659 0.607 4 0.622 0.679

P4 23 5 0.592 0.696 4 0.590 0.652

P5 24 8 0.769 0.792 4 0.495 0.625

P6 30 5 0.695 0.600 4 0.597 0.500

Ind 125 10 0.676 0.688 4 0.575 0.504

Total 284 11 (7.93) 5 (3.90)

CopTa4 (Prunier et al. 2012) CopTa14 (Prunier et al. 2012)

P1 29 4 0.598 0.483 3 0.515 0.655

P2 25 3 0.561 0.600 3 0.575 0.640

P3 28 3 0.538 0.536 3 0.568 0.643

P4 23 4 0.600 0.522 3 0.527 0.435

P5 24 3 0.526 0.500 3 0.613 0.500

P6 30 3 0.605 0.600 3 0.514 0.500

Ind 125 5 0.587 0.504 3 72.936 77.000

Total 284 5 (4.06) 3 (3.00)

CopTa8 (Prunier et al. 2012) Ta1Ca1 (Garner et al. 2003)

P1 29 2 0.242 0.276 3 0.249 0.276

P2 25 2 0.040 0.040 4 0.541 0.560

P3 28 4 0.532 0.643 4 0.316 0.321

P4 23 3 0.300 0.261 4 0.468 0.522

P5 24 5 0.483 0.500 4 0.488 0.583

P6 30 3 0.310 0.233 3 0.391 0.400

Ind 125 6 0.376 0.352 5 0.418 0.392

Total 284 6 (4.40) 7 (4.23)

CopTa10 (Prunier et al. 2012) Ta1Caga4 (Garner et al. 2003)

P1 29 9 0.811 0.828 15 0.915 0.931

P2 25 10 0.811 0.800 15 0.934 0.960

P3 28 8 0.792 0.821 17 0.932 0.893

P4 23 12 0.855 0.783 18 0.954 1.000

P5 24 9 0.801 0.583 16 0.927 0.958

P6 30 12 0.866 0.767 20 0.936 0.900

Ind 125 24 0.886 0.816 35 0.942 0.920

Total 284 25 (16.15) 37 (24.86)
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Fig. 3 Genetic structure detection in DLow, DMedium and DHigh (IBD) and DLow + barrier, DMedium + barrier and DHigh + barrier (IBB),

expressed in percentage of the total number of significant replicates (z-axis), according to the spatial sampling effort (number P of

selected populations; y-axis), the genetic sampling effort (number n of subsampled individuals per population; x-axis) and the

measure used to calculate pairwise genetic distances (Bc: measures of relatedness between individuals using the Bray–Curtis coeffi-

cient; Da and FST: measures of genetic differentiation between populations based on allelic frequencies using Nei’s version of Cavalli-

Sforza’s chord distance and Rousset’s linear FST; see text for details). Light grey surfaces at the bottom of graphs enable a better

visualization of optimal detection thresholds, that is, most parsimonious sampling procedures leading to a significant detection at

95%; dark grey surfaces at the bottom of graphs enable a better visualization of sampling procedures requiring a number nP of

sampled genotypes at least as high as the less parsimonious population-based sampling scheme (PSS).
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Fig. 4 Genetic structure detection in DLow + IBR, DMedium + IBR and DHigh + IBR (IBD) and DLow + barrier + IBR, DMedium +

barrier + IBR and DHigh + barrier + IBR (IBB). See Fig. 3 for details.
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Relative performance of random sampling schemes

When considering the minimum number nP of geno-

types required to detect a significant genetic structure,

the use of an ISS with interindividual genetic distances

(Bc, n ≤ 10) provided IBD and IBB optimal detection

thresholds at least as low as the use of a PSS, whatever

the data set and the level of spatial heterogeneity (Figs 3

and 4). ISSs were particularly parsimonious for IBD

detection in DLow and DMedium data sets and for IBB

detection in all situations except in DLow + barrier + IBR

data set. Though nonsignificant in DLow + barrier data

set, the use of measures of relatedness led to better IBB

detection than any metric based on allelic frequencies.

Whatever the data set, there was a trade-off between

the number n of sampled individuals per aggregate and

the number P of sampled aggregates: detection thresh-

olds increased either with the increase in n to the

expense of P or conversely, with the increase in P at the

expense of n. Except in DHigh, DLow + barrier and

DLow + barrier + IBR data sets, three to four genotypes

per aggregate were sufficient to detect significant

genetic structures.

Relative performance of targeted sampling schemes

When using a targeted sampling scheme, IBB detec-

tion was significant as soon as n ≥ 3, in all data sets

except DHigh + barrier + IBR, the latter requiring the

sampling of at least four genotypes per aggregate

(Fig. 5). When considering the total number nP of

sampled genotypes, the targeted ISS was far more par-

simonious than the targeted PSS, although both

designs outperformed the random sampling schemes

(Figs 3 and 4).

Relative performance of ISS and PSS to detect an IBD
pattern in the alpine newt

When using interpopulation genetic distances in a PSS

(P = 6), neither Mantel tests nor spatial autocorrelation

analyses allowed the detection of any IBD pattern (FST:

r = 0.284, P-value = 0.174; Da: r = 0.301, P-value = 0.159;

Fig. 6a). When using interindividual measures of relat-

edness in a PSS (P = 6), significant genetic relatedness

between pairwise individuals was only detected for the

first 5 km (Fig. 6b), the global Mantel test being close to

significance (Bc: r = 0.07, P-value = 0.054). On the con-

trary, the use of an ISS (72 sampled aggregates) led to

the detection of a highly significant IBD pattern (Bc:

r = 0.073, P-value <10�4). Spatial autocorrelation analy-

ses were significant at both spatial resolutions, with

individuals less than 10 km apart showing significant

genetic similarity (Fig. 6c–d). As highlighted by Legen-

dre (2000), the numerical value of the Mantel statistic

required to reach significance was low, particularly in

individual-based approaches. The confidence intervals

determined by bootstrap resampling were much smaller

with interindividual genetic distances (Fig. 6b, c, d)

than with interpopulation genetic distances.

(a) (b)

Fig. 5 IBB detection following a targeted sampling scheme (52 aggregates localized at less than 3000 m from the barrier), expressed

in percentage of the total number of significant replicates (z-axis), according to the number n of subsampled individuals per popula-

tion (x-axis), in the homogeneous landscape (a) or with IBR (b). Pairwise genetic distances were based on measures of relatedness

between individuals for n ≤ 5 (using Bc) or on allelic frequencies for n = 20 (using FST). A filled symbol indicates that the test was

significant in more than 95% of the replicates.

© 2013 John Wiley & Sons Ltd

OPTIMAL SAMPLING SCHEME IN PATCHY POPULATIONS 5525



Discussion

Overall, our study shows that the interindividual mea-

sure of genotypic dissimilarity, a proxy assessment of

genetic relatedness, is a convenient surrogate for allelic

frequencies when investigating landscape connectivity,

whatever the spatial distribution and dispersal range of

organisms and regardless of the presence of uncon-

trolled landscape heterogeneity. More importantly, it

paves the way to adapting spatial sampling schemes to

the objectives of landscape connectivity studies. In par-

ticular, our results indicate that the ISS enables an effi-

cient trade-off between genetic sampling effort, allowing

an accurate capture of genetic information at the spot

level, and spatial sampling effort, allowing an optimal

representativeness of landscape heterogeneity in data.

As expected by theory (Wright 1943), reducing the

dispersal range of organisms increased the intensity of

IBD patterns in the homogeneous landscape (Fig. 3): in

this situation, distant populations rarely exchange

migrants and drift apart over time, while neighbouring

populations show higher genetic similarity. On the con-

trary, reducing the dispersal range of organisms

reduced the detection power of IBB patterns, as less

mobile individuals are less prone to encounter the

barrier than individuals with high dispersal abilities

(Safner et al. 2011a; Blair et al. 2012). Introducing

topographic obstacles (i.e. IBR) slightly altered the detec-

tion power of both IBD and IBB patterns in all but the

data set with low interaggregate dispersal, in which case

the IBB pattern was no longer detected (DLow +
barrier + IBR; Fig. 4). This slight effect of IBR, observed

in most situations, was probably due to the overall

decrease in the dispersal range, rather than to the spatial

heterogeneity in dispersal per se (i.e. spatial noise due to

uneven aggregate accessibility), both phenomena being

concomitant with the introduction of a topographic

resistance to dispersal in addition to IBD (see Table 1).

Simulations focusing on spatial noise only (i.e. with the

maximal dispersal range Dmax being based on the fric-

tion map rather than on the homogeneous map; data not

shown) confirmed this point, as well as the strong nega-

tive effect of spatial heterogeneity on the detection

power of IBB patterns in organisms with low dispersal

abilities. This latter result may be due to the properties

of the topographic map, with relief and hydrographic

(a) (b)

(c) (d)

Fig. 6 Spatial patterns of genetic similarity among aggregates sampled following a PSS (a–b) and an ISS (c–d). For the PSS, we used

(a) interpopulation genetic distances based of allelic frequencies (FST; the use of Da led to a very similar pattern) and (b) interindivid-

ual measures of relatedness (Bc). For the ISS, we used only interindividual measures of relatedness (Bc) with distance classes defined

every 5000 m (c) and every 2500 m (d). r: standard Mantel correlation with 1000 standard or restricted permutations. Error

bars bound the 95% confidence interval about r as determined by bootstrap resampling. Upper and lower confidence limits (dotted

line) bound the 95% confidence interval about r under the null hypothesis of no spatial structure. ∗: P-value <0.05; ∗∗: P-value <0.01;
∗∗∗: P-value <0.001.
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network resulting in highly resistant lines segregating

several clusters of aggregates (see Fig. 1), and affecting

IBB signal-to-noise ratio when analyses are performed

on the scale of the whole map. Nevertheless, even in

such a situation, the signal-to-noise ratio may be

enhanced by using a targeted sampling procedure.

Indeed, IBB detection was clearly improved when focus-

ing on the landscape feature of interest even in data sets

with low interaggregate dispersal (Fig. 5), that is, when

sampled aggregates were selected to avoid both ghost

populations and large gaps relative to the putative bar-

rier to gene flow (Anderson et al. 2010).

Both simulated and empirical data sets showed that

interindividual measures of genotypic dissimilarity,

such as the Bray–Curtis index Bc, could efficiently

replace interpopulation genetic distances based on alle-

lic frequencies. Interindividual genetic distances were

roughly as efficient as interpopulation genetic distances

when applied to the same sample (i.e. PSS) in all situa-

tions, and outperformed the use of allelic frequencies

for IBB detection, especially in a data set with low inter-

aggregate dispersal (see Fig. 2). Furthermore, our analy-

ses indicate that using interindividual genetic distances

substantially enhanced IBD detection in the alpine newt

(see Fig. 6). While metrics based on allelic frequencies

may suffer from a loss of resolution due to the averag-

ing of genetic information over individuals (Kelly et al.

2010), measures of interindividual genetic relatedness

are based on the averaging of the genetic information

over alleles: the evolution of alleles co-occurrence

through generations is thus likely to show less inertia

than the evolution of allelic frequencies. One may there-

fore expect interindividual measures of genotypic dis-

similarity to outperform measures based on allelic

frequencies, especially in organisms with low dispersal

abilities as suggested by our results regarding IBB

detection (Fig. 3). Besides, provided that pseudo-repli-

cation issues are taken into account (e.g. using restricted

permutations in Mantel tests), the use of interindividual

genetic distances implies an increase in the size of dis-

tance matrices, potentially increasing the accuracy and

the inferential power of correlative analyses (see

Fig. 6a–b; Legendre & Fortin 2010). We thus argue that

many unpublished empirical genetic studies based on a

PSS may benefit from the use of interindividual mea-

sures of genetic dissimilarity instead of interpopulation

measures of genetic differentiation, although further

work will be required for a better understanding of dif-

ferences and potential benefits of various interindividu-

al metrics. In any case, the number n of genotypes

should be kept balanced from one aggregate to one

another, although a slightly and randomly unbalanced

sampling is unlikely to affect matrix correlation analy-

ses (see Appendix S4, Supporting information).

Not contingent on the use of allelic frequencies, the

use of individuals as the operational unit also allows

the number n of sampled genotypes per aggregate to be

reduced in favour of a better coverage of landscape het-

erogeneity. For the same genotyping effort (i.e. nP),

increasing P to the expense of n in an ISS, that is,

decreasing the genetic sampling effort at the spot level

in favour of a better sampling coverage of spots at the

landscape level (Jaqui�ery et al. 2011), was never less

efficient than the conventional PSS. It was even more

efficient in most situations: no more than ten individu-

als had to be sampled per aggregate to efficiently detect

IBD and IBB genetic patterns, three or four individuals

being sufficient in most situations (Figs 3 and 4). Correl-

ative analyses may therefore gain from including spar-

sely inhabited spots that are usually discarded in

conventional PSSs. Furthermore, by drastically increas-

ing the number P of aggregates that may be sampled,

the ISS offers a higher flexibility in spatial sampling

designs. For instance, even though a targeted PSS was

clearly more efficient than a random PSS, it was largely

outperformed by the targeted ISS as the same conclu-

sions were obtained with only a few sampled genotypes

per aggregate (Fig. 5). In the same way, the ISS allowed

a more exhaustive sampling and a decrease in the dis-

tance between sampled aggregates in the alpine newt,

thereby providing a finer description of spatial pattern

of genetic similarity among aggregates than when using

a PSS (Fig. 6c–d). Individuals located less than 10 km

apart showed significant genetic similarity. This pattern

is highly relevant from a conservation perspective as it

suggests that genes spread out according to a ‘stepping-

stone’ model (Kimura & Weiss 1964; Fedy et al. 2008),

that is over greater distances than the dispersal ability

of the alpine newt might suggest (less than 1000 m a

year; Smith & Green 2005; Kovar et al. 2009). More

broadly speaking, the ISS may allow a better represen-

tativeness of landscape heterogeneity through an

exhaustive sampling of aggregates over a larger study

area, and/or over a number of independent replicates,

allowing accurate inferences about genetic patterns

(Anderson et al. 2010; Manel et al. 2010). In this respect,

genetic data from an ISS may be particularly well fitted

for use in mixed models (Clarke et al. 2002; Selkoe et al.

2010; Van Strien et al. 2012), providing that specific ran-

dom effects are implemented to take into account

pseudo-replication issues at various spatial scales.

Indeed, preliminary analyses showed that mixed mod-

els and Mantel tests with restricted permutations

yielded similar results in our study (see Appendix S3,

Supporting information). As an example, collinearity

between environmental variables, underlying the alter-

native resistance hypotheses that can be hypothesized

from a same landscape, has recently been suggested as
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an important drawback when applying matrix correla-

tion analyses to assess landscape connectivity from

genetic data (Cushman et al. 2013; Guillot & Rousset

2013). Considering multiple independent replicates in a

mixed modelling framework could help solve this

difficulty as it may allow disentangling the potential

impacts of collinearity between variables at the replicate

level (Graham 2003; Cushman & Landguth 2010b). The

advantages of an ISS may also benefit to alternative

tools such as overlay methods based on genotypes

rather than allelic frequencies (Manni et al. 2004; Crida

& Manel 2007; Jombart et al. 2008). Although a higher

sampling effort of genotypes per aggregate may pro-

vide more accurate genetic distances, one should note

that increasing the number or the polymorphism of

genetic markers may provide comparable benefits

(Landguth et al. 2012). This alternative is now within

our grasp, given the current advance of next-generation

sequencing technologies (Segelbacher et al. 2010).

As already advocated (e.g. Cushman et al. 2006), ISS

could be applied across broad landscapes in order to

minimize a priori knowledge about the scale on which

genetic pattern occurs as well as the relevant landscape

features that impede gene flow. Both our simulations

and our empirical test on a patchy distributed organ-

ism clearly support this point of view. However, our

results also suggest that sampling more than one

organism per spot should be of great benefit to the

detection of spatial genetic patterns in most situations.

The optimal sample size probably depends on both the

size of aggregates and the actual dispersal rate between

aggregates. According to our results, around ten per

cent of the aggregate could be sufficient for this pur-

pose. However, one should note that this sample size

is far from the one required for the identification of

critical demographic processes such as bottlenecks or

inbreeding, or for the direct estimation of gene flow

through the use of parentage analyses (Manel et al.

2005; Broquet & Petit 2009): PSSs are clearly still

needed to precisely investigate the influence of connec-

tivity on population functioning. Ideally, genetic field

sampling schemes in patchy populations should be

designed to benefit from the advantages of both strate-

gies (Broquet & Petit 2009). One should first apply an

ISS to extensive areas in order to provide a global pre-

liminary picture of spatial processes likely to affect

genetic structures and to investigate the relative influ-

ence of various landscape features using a multimodel

inference approach. This first step could clear the way

to implementing accurate population-based analyses

using a PSS in the second phase. In this second step,

sampling could be performed on targeted landscape

features selected according to the results from previous

individual-based analyses. Such an accurate PSS may

then allow the use of assignment tests or coalescent

methods, possibly providing insightful complementary

information about landscape permeability to gene flow

in clustered populations (Holderegger & Wagner 2008;

Anderson et al. 2010).
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