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Abstract

Habitat fragmentation can play a major role in the reduction of genetic diversity

among wildlife populations. The Ruaha‐Rungwa and Katavi‐Rukwa ecosystems in

south‐western Tanzania comprise one of the world's largest remaining African

savannah elephant metapopulations but are increasingly threatened by loss of con-

nectivity and poaching for ivory. To investigate the genetic structure of populations,

we compared the genotypes for nine microsatellite loci in the western, central and

eastern populations. We found evidence of genetic differentiation among the three

populations, but the levels were low and mostly concerned the younger cohort, sug-

gesting recent divergence probably resulting from habitat loss between the two

ecosystems. We identified weak isolation by distance, suggesting higher gene flow

among individuals located less than 50 km apart. In a long‐lived species with over-

lapping generations, it takes a long time to develop genetic substructure even when

there are substantial obstacles to migration. Thus, in these recently fragmented pop-

ulations, inbreeding (and the loss of heterozygosity) may be less of an immediate

concern than the loss of adults due to illegal hunting.

Résumé

La fragmentation des habitats peut jouer un rôle majeur dans la réduction de la

diversité génétique des populations sauvages. Les écosystèmes de Ruaha‐Rungwa et

de Katavi‐Rukwa, au sud‐ouest de la Tanzanie, abritent une des dernières grandes

métapopulations d’éléphants de savane africains, mais elle est de plus en plus mena-

cée par la perte de connectivité et le braconnage pour l'ivoire. Pour étudier la struc-

ture génétique des populations, nous avons comparé neuf loci microsatellites des

génotypes des populations de l'ouest, du centre et de l'est. Nous avons trouvé des

signes de différenciation génétique dans les trois populations, mais le niveau était

bas et touchait plutôt les plus jeunes, ce qui laisse penser à une divergence récente

résultant probablement de la perte d'habitat entre les deux écosystèmes. Nous

avons identifié un faible isolement par la distance, ce qui suggère un plus grand flux

génétique entre individus situés à moins de 50 km d’écart. Chez une espèce à lon-

gue durée de vie, où les générations se chevauchent, il faut du temps pour dévelop-

per une sous‐structure génétique même lorsqu'il existe de sérieux obstacles à la

migration. Donc, dans ces populations fragmentées depuis peu, l'inbreeding (et la
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perte de caractère hétérozygote) peut être moins préoccupant dans l'immédiat que

la disparition des adultes à cause de la chasse illégale.

K E YWORD S

African elephant, genetic isolation, habitat fragmentation, microsatellites

1 | INTRODUCTION

Human population growth is one of the main drivers of natural habi-

tat loss and increased isolation of natural landscapes (Jones et al.,

2012; Pereira et al., 2010; Rands et al., 2010). Habitat loss and frag-

mentation is a conservation problem not only because of the direct

loss of range and increased edge effects (Hanski, 2011; Lamb, Balm-

ford, Green, & Phalan, 2016), but also because of the potential for

inbreeding depression through genetic drift (Hedrick & Kalinowski,

2000), making restoration and conservation of wildlife corridors

increasingly important in times of unprecedented habitat fragmenta-

tion (Graham, Douglas‐Hamilton, Adams, & Lee, 2009; Jones et al.,

2012). Of particular, concern is the speed and scale at which frag-

mentation is happening (Haddad et al., 2015; Hansen et al., 2013),

because few migration routes are entirely within protected areas

(Bartlam‐Brooks, Bonyongo, & Harris, 2011; Harris, Thirgood, Hop-

craft, Cromsigt, & Berger, 2009; Tucker et al., 2018). A recent study

conducted across five continents indicates that fragmentation of nat-

ural habitat reduces biodiversity by 13%–75% with effects being

greatest in the smallest and most isolated fragments (Haddad et al.,

2015).

African elephant (Loxodonta africana) populations were histori-

cally distributed across the continent (Douglas‐Hamilton, 1987), with

very little or no genetic structure among populations (Georgiadis et

al., 1994). But in recent years, fragmentation has escalated across

their range largely restricting many mega‐herbivores to protected

areas (Graham et al., 2009; Jenkins & Joppa, 2009), which represent

fragments of the once continuous historic ranges (Ripple et al.,

2015). Habitat fragmentation and illegal hunting for ivory may lead

to inbreeding depression (Allendorf, Luikart, & Aitken, 2013; Ishida,

Gugala, Georgiadis, & Roca, 2018) and loss of genetic variation

(Gobush, Kerr, & Wasser, 2009; Wasser et al., 2015), especially

when the oldest individuals (who are often the target) are involved

(Archie et al., 2008). This poses a question of whether populations

that once ranged across the continent are becoming genetically iso-

lated because of ongoing habitat destruction, fragmentation and ille-

gal killings. While it is important to recognize that there is a time lag

between changes to habitats and the time when the full implications

of those changes are experienced by wildlife species (Bennett, 1998,

2003), it is desirable to understand early signs of variation among

populations using measures of genetic differentiation (Paule, Kra-

jmerová, Romšáková, & Schlosserová, 2012; Taylor, Walker, Goldin-

gay, Ball, & Van Der Ree, 2011). Information contained in a series of

individual genotypes can quantify the extent to which isolated popu-

lations have lost genetic diversity over time, making it a relevant tool

for assessing differences in structure within and among populations

of the same species in fragmenting habitats (Taylor et al., 2011).

The past 20 years have seen widespread deforestation of the

miombo woodlands in areas between Katavi‐Rukwa and Ruaha‐
Rungwa ecosystems in south‐western Tanzania, with about 17.5% of

the woodlands and forests modified or removed to make way for

agricultural development, threatening connectivity between these

ecosystems (Lobora et al., 2017). The area has one of the world's lar-

gest remaining African elephant populations (Chase et al., 2016;

TAWIRI, 2014, unpublished data) and of high conservation priority

because it (a) joins two large, well‐protected elephant populations

and (b) forms the principle link between the central and western

African elephant populations in Tanzania. Because fragmentation in

this landscape is relatively recent (Lobora et al., 2017), and because

elephants are long‐lived (generation time of 25 years; Armbruster &

Lande, 1993; Blanc, 2008) and show large population sizes, previous

studies carried out in this area found little genetic structure among

adults (Epps, Wasser, Keim, Mutayoba, & Brashares, 2013). We thus

expect there to be little or no genetic structure among adults. How-

ever, Wasser et al. (2015) show that there is sufficient differentia-

tion across the continent to allow identification of source

populations of poached ivory from genetic data. Given the potential

for recent disruption of gene flow, testing for developing spatial

genetic structure among individuals from the younger age classes

could be informative. If adult movement has recently become

restricted due to the recent fragmentation of the Katavi‐Rukwa and

Ruaha‐Rungwa ecosystems, we expect to see incipient signs of

genetic structure, particularly among the younger cohorts within

these populations, and particularly given that male movement and

dominance patterns are already known to drive age‐related popula-

tion structure in African elephants (Archie et al., 2008).

2 | MATERIALS AND METHODS

2.1 | Study area

The study area covers about 109,050 km2 and lies between latitude

6°15′59.38″ and 8°10′23.78″ S and between longitude 30°45′13.29″
and 35°28′34.44″ E. The area comprises the Katavi‐Rukwa ecosys-

tem in the west, a contingent of Game Reserves (henceforth “GRs”),
Game Controlled Areas (GCAs) and Open Areas (OAs) in the central

part, as well as the Ruaha‐Rungwa ecosystem in the east (Figure 1).

About 45,961 km2 of this area is designated as Fully Protected Areas

(two National Parks‐NPs, seven GRs where no human settlements

are permitted), and 34,196 km2 designated as Lesser Protected

2 | LOBORA ET AL.



Areas (eight GCAs and eight OAs where human settlements are per-

mitted alongside wildlife conservation). A further 28,893 km2 of land

within the study area is unprotected and includes towns and highly

populated regions north and south of Katavi National Park, and to

the north‐east and south of Ruaha National Park (Figure 1).

2.2 | Methods

2.2.1 | Sample collection

We collected 380 fresh dung samples between July and November

2015 in Katavi‐Rukwa ecosystem (henceforth “western population”),
Lukwati and Piti Game Reserves (henceforth “central population”)
and Ruaha‐Rungwa ecosystem (henceforth “eastern population”). An
opportunistic random sampling strategy was used to obtain samples

from different parts of the study area while avoiding samples from

closely related individuals (e.g., in the event that a group of fresh

samples were encountered in the same location, we only collected

one sample). For each sample, we placed approximately 10 g of the

external region of the dung bolus surface with genetic content

(<12 hr old) in 40‐ml polypropylene tubes and boiled them for

15 min in the field to stall microbial activity and then preserved in

Queens College Buffer (20% DMSO, 100 mM Tris pH 7.5, 0.25 M

EDTA, saturated with NaCl; Amos et al., 1992). Samples were ini-

tially kept in the dark at room temperature in the field station and

later moved to a laboratory at the Nelson Mandela African Institu-

tion for Science and Technology (NM‐AIST) for postfield storage and

subsequently shipped to the University of Missouri‐Division of Bio-

logical Sciences under USDA permit number 128686 for subsequent

DNA extraction and analyses.

2.2.2 | DNA extraction, PCR, sexing and
microsatellite genotyping

The QIAamp mini stool extraction kit (Qiagen, Valencia, CA) was

used to extract DNA from samples following earlier published proto-

cols (Archie, Moss, & Alberts, 2006). The extraction process took

place in a laboratory designated exclusively for the extraction of

DNA from noninvasively collected samples to minimize the possibil-

ity of contamination (Ahlering, Hailer, Roberts, & Foley, 2011; Okello

et al., 2008). We genotyped all samples at 11 dinucleotide

microsatellite loci developed for the African elephant (FH1, LaT24,

FH60, LA5, FH19, LafMS06, LA6, LaT08, LafMSO2, FH48 and

FH67), using published primers (Archie et al., 2006, 2008; Eggert,

Patterson, & Maldonado, 2008; Kongrit et al., 2008; Nyakaana, Abe,

Arctander, & Siegismund, 2001; Okello et al., 2008) with fluorescent

labels. Multiplex PCRs (Ahlering et al., 2011) were performed using

Platinum Multiplex PCR Master Mix (Applied Biosystems, Foster

City, CA) following the manufacturer protocols, but in 8 μl volumes

with 0.8X BSA and GC enhancer solution added to a final

F IGURE 1 Sampling locations across
the study area
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concentration of 10%. The PCR profile included an initial denaturing

step at 95°C for 2 min, followed by 40 cycles of 95°C denaturing

for 30 s, annealing at locus‐specific temperatures for 90 s and 72°C

extension for 60 s; and a final 30‐min extension at 60°C. A negative

control was included in each PCR plate to detect contamination of

the PCR reagents, and a positive control sample was included to

standardize scoring. We genotyped all samples on an ABI 3730XL

capillary sequencer and subsequently analysed with GeneMarker

v2.6.7 (Soft Genetics LLC). To minimize the probability of genotyping

error, we repeated our genotyping three times or until were able to

obtain at least three confirmations of each genotype (Ahlering et al.,

2011; Frantz et al., 2003; Hansen, Ben‐David, & Mcdonald, 2008).

We used the Excel Microsatellite Toolkit (Park, 2001) to identify

potential genotyping errors, create input files for population genetic

analysis programmes, find genetically identical samples and calculate

allele frequencies and diversity statistics. Because DNA extracts from

noninvasively collected samples are dilute and contain degraded

DNA, we rechecked each pair of genotypes that differed at three or

fewer loci for possible problems with allelic dropout and considered

genotypes to represent the same individual if they differed at two or

fewer alleles but matched in sex and had very similar bolus circum-

ferences (Ahlering et al., 2011). This conservative approach was

taken to avoid scoring samples as different individuals when they

are actually erroneous genotypes (Ahlering et al., 2011).

To determine individual sex, we followed Ahlering et al. (2011).

The PCR was performed in 25 μl reactions containing 1 U Ampli-

Taq Gold DNA Polymerase (Applied Biosystems), 1X PCR Gold Buf-

fer (Applied Biosystems), 0.2 mM dNTPs, 0.4 mM SRY1 forward

primer, 0.4 mM SRY1 reverse primer, 0.4 mM AMELY2 forward pri-

mer, 0.4 mM AMELY2 reverse primer, 0.4 mM PLP1 forward pri-

mer, 0.4 mM PLP1 reverse primer, 0.4 mM MgCl2, 0.8X BSA and

1 μl DNA extract. The PCR profile consisted of an initial denatura-

tion at 95°C for 10 min, followed by 45 cycles of 95°C denaturing

for 30 s, annealing at 59°C for 30 s and extension at 72°C for

45 s, with a final extension of 10 min at 72°C. Each PCR plate

contained a negative (no DNA) and positive control to detect pos-

sible contamination of the PCR reagents and consistency of the

amplification, respectively (Ahlering et al., 2011). Five microlitres of

PCR product was subsequently electrophoresed at 80 V for 40 min

on a 2% Agarose gel. As the restriction site is on the Y‐chromo-

some, we scored single bands (PLP1‐191 bp) as females and three

bands (SRY1‐71 bp, AMELY2‐122 bp, PLP1‐191 bp) as males and

repeated the process once for each sample to confirm sex (Ahlering

et al., 2011).

2.3 | Genetic analysis

We analysed the set of unique genotypes within and among popula-

tions using GenePop 4.2 (Raymond & Rousset, 1995; Rousset, 2008)

to test for deviations from expected heterozygosity values under

Hardy–Weinberg equilibrium (HWE), for linkage disequilibrium, and

to determine the number of alleles at each locus (A), the observed

(HO) and expected (HE) heterozygosity values and the coefficient of

inbreeding (FIS) as estimated by Weir & Cockerham, 1984. Because

sample sizes were unequal, we used rarefaction in HP‐Rare (Kali-

nowski, 2005) to estimate allelic richness, that is, the mean number

of alleles at a sample size of 36 (the smallest sample size of any pop-

ulation). We compared rarefied allelic richness among populations

using a Kruskal–Wallis test with loci treated as replicates. We esti-

mated genetic distances (fixation index‐Fst) between pairs of popula-

tions in Arlequin version 3.5.1.3 (Excoffier & Lischer, 2010) and

evaluated the significance of these Fst values using a permutation

test (1,000 permutations).

We tested for genetic differentiation using pairwise Fst across all

individuals in the three populations (Text S1). To test for the influ-

ence of age class on genetic differentiation, we also estimated global

Fst for each age and then compared Fst across groups of different

age cohorts, that is, young age 0–9, subadult age 10–19 and adult

age 20+. We obtained the age structure of the three populations

through dung bolus measurements following Morrison, Chiyo, Moss,

and Alberts (2005). To determine whether observed levels of genetic

differentiation across age cohorts were significant, we randomly per-

muted age cohorts among individuals and computed a theoretical

global Fst under the hypothesis of no age structure in the data set.

The permutation procedure was repeated 1,000 times, and, for each

age cohort, we computed the mean and the 95% quantiles of the

obtained theoretical distributions. Global Fst estimates were calcu-

lated using the hierfstat (Goudet, 2005) and adegenet (Jombart,

2008) R‐packages.
To investigate possible patterns of isolation by distance (IBD),

we used an individual‐based approach. We computed a pairwise

matrix of interindividual genetic distances using the Bray–Curtis per-

centage dissimilarity measure (function diss.dist from the R‐package
poppr; Kamvar, Tabima, & Grünwald, 2014) that we compared to the

corresponding pairwise matrix of interindividual Euclidean distances

using a simple Mantel test with 10,000 permutations (function man-

tel.randtest from the R‐package ade4: Dray & Dufour, 2007). Addi-

tionally, based on the geographic coordinates of sample locations,

we investigated spatial patterns of IBD using a spatial autocorrelo-

gram in GenAlEx (Peakall & Smouse, 2006) using the matrix of Bray–
Curtis percentage dissimilarity measures as the response variable.

Euclidean distance classes were defined every 50,000 m (up to

50 km). Mantel spatial autocorrelograms were also computed for

each sex separately.

To test for genetic structure on an evolutionary timescale, we

analysed genotypes in STRUCTURE 2.3.4 (Pritchard, Stephens, &

Donnelly, 2000), a Bayesian model‐based clustering algorithm. We

programmed the length of the burn‐in period to 10,000 and the

number of Markov chain Monte Carlo reps after the burn‐in to at

least 100,000 steps. We further programmed STRUCTURE to run 10

times for each value of K from 1 to 10, with the use of prior infor-

mation about the location (LOC_PRIOR) from which the sample was

collected, under the admixture model with correlated allele frequen-

cies among populations. We used spatial principal component analy-

sis (Jombart, Devillard, Dufour, & Pontier, 2008) to reveal possible

cryptic genetic structures, stemming from the specific life‐history
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traits of this long‐lived species. The sPCA seeks principal compo-

nents that optimize the variance of individual allelic frequencies

while taking spatial autocorrelation of data into account. It disentan-

gles global structures stemming from strong genetic similarity or pos-

itive autocorrelation between neighbours, from local ones, stemming

from strong genetic differences or negative autocorrelation between

neighbours. Interindividual spatial autocorrelation was modelled

according to a distance‐based neighbourhood network with a dis-

tance threshold consistent with results from the spatial autocorrelo-

gram: All individuals located more than 50 km apart were not

considered as neighbours in the spatial network (see results for

details). Global and local Monte Carlo tests were carried out with

10,000 permutations to evaluate the significance of detected global

and local patterns (Jombart et al., 2008).

3 | RESULTS

Of the 380 samples collected across the landscape, 376 (98.9%)

were successfully genotyped and 310 individuals identified by their

unique genotypes. The remaining 66 samples were recaptures within

the same populations and therefore discarded from subsequent anal-

yses. The age class distribution by sex of the three populations is

presented in Table 1. We were unable to determine sexes for some

individuals due to repeated failure to discriminate bands as either

males or females (Table 1).

Two of the 11 loci (LafMS02 and LafMS06) did not conform to

expectations under HWE in any of the three populations after apply-

ing Bonferroni correction for multiple tests (Rice, 1989). These loci

had significant excesses of heterozygosity that could not be resolved

through reanalysis of the genotypes and hence were removed from

the analyses. Other than these loci, LA5 and FH19 deviated from

expectations in the western population, FH60 deviated in the central

population and LA5 and FH48 deviated in the eastern population.

Because there were no consistent patterns of deviation across popu-

lations, these loci were retained in the analyses.

3.1 | Genetic diversity within populations

We found high levels of genetic diversity in all populations, with alle-

lic diversity ranging from an average of 8.7 (±1.9 SD) alleles per locus

in the eastern population to 6.2 (±2.3 SD) alleles per locus in the

central population (Table S1). When these values were corrected

with a standard sample size of 36 (the size of the smallest sample)

using rarefaction (Kalinowski, 2004), there was no significant differ-

ence among populations in the number of alleles (Kruskal–Wallis

K = 5.208, df = 8, p = 0.735) or private alleles (Kruskal–Wallis,

K = 5.865, df = 8, p = 0.662).

3.2 | Genetic differentiation among populations

We found the three populations to be significantly different,

although the level of differentiation was small, with Fst values rang-

ing from 0.006 between the eastern and central populations to

0.011 between the western and central populations (Table 2). We

identified weak (but statistically significant) IBD (Mantel test,

r = 0.09, p = 0.045), suggesting higher gene flow among nearer indi-

viduals. Samples within 50 km of each other were more likely to be

genetically similar, but beyond this distance, there was no remaining

spatial autocorrelation (Figure 2). No significant spatial autocorrela-

tion pattern could be identified when considering males and females

separately (data not shown).

Analyses in STRUCTURE detected no significant genetic cluster-

ing among populations across the study landscape (K = 1) (Table S2),

suggesting that while there is significant differentiation over a

recent, ecological timescale, individuals represent a single genetic

population over an evolutionary timescale. Nevertheless, we identi-

fied significant cryptic genetic structures when using sPCA. The glo-

bal Monte Carlo test performed in sPCA was significant (max

(t) = 0.007, p = 0.007), indicating the presence of a significant global

genetic structure. On the contrary, the local Monte Carlo test did

not detect any significant local structure (max(t) = 0.013, p > 0.05).

Scores of individuals along the first sPCA axis distinguished the

western population from the central and eastern populations (Fig-

ure 3). Along the second axis though, individuals showed a spatial

pattern characterized by a longitudinal alternation of genetic clusters,

roughly delimited every 50 km, highlighting the influence of a con-

tinuous IBD in this species (Figure 3).

3.3 | Genetic differentiation among age cohorts

As expected, global Fst estimates were higher in young cohorts (Fst =

0.055) than in subadults and adult's cohorts (Fst = 0.008 in both

cohorts). The 95% confidence intervals around mean expected Fst

values under the hypothesis of an absence of age structuration indi-

cated that young individuals from different populations were signifi-

cantly more genetically distinct than older individuals from different

populations (Figure 4).

TABLE 1 Age class distribution by sex

Sex Adult Subadult Young Juvenile Unknown

Female 68 41 11 0

Males 90 39 11 2

Unknown 48

158 80 22 2 48

TABLE 2 Genetic distance measures among populations

Western Central Eastern

Western — 0.011* 0.007**

Central 0.011* — 0.006**

Eastern 0.007** 0.006** —

Note. Significance levels are indicated as *p < 0.05, **p < 0.01.
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4 | DISCUSSION

We found evidence of weak but significant genetic differentiation

among the three recently divided populations, particularly between

younger elephants, suggesting that the recent loss of natural habitat

(Lobora et al., 2017) may be starting to generate population‐level dif-
ferences. Isolation was weakly but significantly associated with dis-

tance, consistent with early stages of population fragmentation.

Landguth et al. (2010) found the lag time to barrier detection with

genetic methods to be relatively short (1–15 generations) for

wide‐ranging species but cautioned that detecting the effects of

fragmentation on long‐lived species (with overlapping generations)

over ecological time scales may be difficult. Thus, we are not sur-

prised that STRUCTURE did not detect significant genetic clustering.

Although this programme works well when population structure is

relatively weak (Hubisz, Falush, Stephens, & Pritchard, 2009), it may

fail to detect structure when differentiation levels are as low as

those in this study (Duchesne & Turgeon, 2012). This is also consis-

tent with our prediction that there would be no significant structure

across adult individuals in these populations at evolutionary time-

scales because habitat fragmentation is a recent phenomenon.

Nevertheless, sPCA revealed subtle global hierarchical genetic

structure, with eastern and central populations (white squares) show-

ing higher genetic relatedness than the western population (black

squares) at the higher level of the hierarchy (Figure 3). This is unsur-

prising because habitat loss/fragmentation due to anthropogenic

activities is higher between western and central populations than

between central and eastern populations (Lobora et al., 2017). At

the lower level of the hierarchy, it appeared that genetic structuring

mostly stemmed from a longitudinal IBD pattern, with a lag distance

of about 50 km, suggesting that IBD is an important driver of

genetic differentiation in this system.

The historical large extent of miombo woodland linking these

three populations appears to have facilitated broadscale connectivity,

at least until recently (Epps et al., 2013). Our recent analysis on the

broad area extending from the Ruaha‐Rungwa ecosystem to the

Katavi‐Rukwa ecosystem indicates that these areas retained approxi-

mately 73% of miombo woodland cover up until 1990s and continu-

ous connectivity may only have been impaired recently (Lobora

et al., 2017). Despite large areas of natural woodland remaining

between the two ecosystems, even now habitat loss has limited

movement between the two ecosystems to a very narrow region

(corridor), including some areas heavily used by people and a main

road that links the northern and southern regions of Tanzania (Caro,

Jones, & Davenport, 2009; Jones, Caro, & Davenport, 2009; Riggio

& Caro, 2017).

The low level of genetic differentiation among populations could

partly be explained by the fact that, in the absence of long‐standing
habitat fragmentation, the average distance between farthest popu-

lations (about 200 km) is within the dispersal capabilities of the Afri-

can elephant (Blanc et al., 2007). The measure of population

subdivision across all populations (Fst) was low suggesting many suc-

cessful migrants entering each population per generation (approxi-

mately 25 years for African elephant, Blanc, 2008) assuming an

island model of migration (Frankham, Ballou, & Briscoe, 2002). Nev-

ertheless, without substantial levels of gene flow, habitat fragmenta-

tion and other anthropogenic disturbances can lead to extensive

genetic differentiation among populations (Dixon et al., 2007), even

among populations that are geographically close (Vos, Jong, Goed-

hart, & Smulders, 2001), as suggested by higher genetic differentia-

tion in the young cohort.

Our genetic data did not suggest that there has been significant

inbreeding in these populations, highlighting the importance of man-

agement actions (such as protection of the remaining potential habi-

tat for connectivity) to maintain migration corridors that reinforce

gene flow. This is particularly important because conservation of

wide‐ranging species depends not only on protected areas but also

dispersal areas to provide connectivity (Ahlering et al., 2012; Caro &

Riggio, 2014; Epps et al., 2013; Western, Russell, & Cuthill, 2009).

Our analysis indicates fragmentation signs to be affecting the genetic

structure of young individuals born when movement became

increasingly restricted after 1990 and that genetic variation observed

F IGURE 2 Correlogram showing spatial
genetic autocorrelation (r) among
individuals as a function of Euclidean
distance. Distance classes were defined
every 50 km. Dotted lines indicate the
95% CI about the null hypothesis of no
genetic structure. The error bars about r
represent the 95% CI, as determined by
bootstrapping (1,000 iterations)
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between adults and the young age could be precursors of what can

be expected in the future. These changes will persist for at least a

generation (even if connectivity was completely resurrected today),

but appropriate management could restore a fully panmictic popula-

tion in the future.

Overall, the results obtained in our analysis are consistent with

the suggestion that habitat fragmentation and loss will soon consti-

tute a threat to African elephant populations across their range

(Comstock et al., 2002). As demonstrated in other taxa such as

large carnivores (Johnson, Eizirik, Roelke‐Parker, & O Brien, 2001),

African elephants are also susceptible to losses in genetic variation

due to habitat fragmentation, despite long generation times (Blanc,

2008). The incipient signs of genetic differentiation detected in our

analysis indicate increasing conservation challenges in human‐domi-

nated landscapes (Newmark, 2008), calling for deliberate efforts

and political will to save remaining dispersal areas for continued

gene flow.

4.1 | Management implications

A species’ ability to cope with the changing selective forces resulting

from anthropogenic disturbance may be partially determined by the

F IGURE 3 Analyses of individual
genetic data using sPCA. (a) Positive and
negative sPCA eigenvalues; only the two‐
first positive (global) axes, corresponding to
patterns of positive spatial autocorrelation
among genotypes, were considered here.
(b) Map of the first global sPCA scores for
each individual. (c) Map of the second
global sPCA scores for each individual.
Large white and black squares stand for
highly negative and positive individual
scores, respectively. Small squares stand
for low individual scores. White and black
squares allow identifying distinct genetic
clusters along each global axis, whereas
the size of squares indicates how similar a
genotype is from its neighbours (here
located less than 50 km apart)
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amount of genetic variability in populations as well as the way that

variation is structured within and between populations (Archie, Fitz-

patrick, Moss, & Alberts, 2011; Ishida et al., 2016). Evidence for

recent emergence of genetic structure within the three studied ele-

phant populations suggests that habitat loss and fragmentation in

the areas between Ruaha and Katavi are starting to alter population

connectivity. At present, a narrow corridor of natural habitat persists

between the two systems, but heavy human use likely reduces the

suitability of this corridor for elephant movements. The remaining

potential habitat for connectivity between the two ecosystems falls

under the multiple landuse categories (OAs), and we call for deliber-

ate and timely actions to upgrade the protection status of this area

to ensure continued gene flow between these populations. One of

these efforts may include transforming these OAs (Piti east &

Rungwa south) to a Wildlife Management Area, a new landuse cate-

gory that promotes local community‐driven conservation allowing

greater local community buy‐in (USAID, 2013; WWF, 2014), or

establishing Game Reserves that restricts multiple uses on a case by

case basis.
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