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abstract: Identifying landscape features that affect functional con-
nectivity among populations is a major challenge in fundamental and
applied sciences. Landscape genetics combines landscape and genetic
data to address this issue, with themain objective of disentangling direct
and indirect relationships among an intricate set of variables. Causal
modeling has strong potential to address the complex nature of land-
scape genetic data sets. However, this statistical approach was not ini-
tially developed to address the pairwise distance matrices commonly
used in landscape genetics. Here, we aimed to extend the applicability
of two causal modeling methods—that is, maximum-likelihood path
analysis and the directional separation test—by developing statistical
approaches aimed at handling distance matrices and improving func-
tional connectivity inference. Using simulations, we showed that these
approaches greatly improved the robustness of the absolute (using a
frequentist approach) and relative (using an information-theoretic ap-
proach) fits of the testedmodels.We used an empirical data set combin-
ing genetic information on a freshwater fish species (Gobio occitaniae)
and detailed landscape descriptors to demonstrate the usefulness of
causal modeling to identify functional connectivity in wild populations.
Specifically, we demonstrated how direct and indirect relationships in-
volving altitude, temperature, and oxygen concentration influenced within-
and between-population genetic diversity of G. occitaniae.
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Introduction

Landscape genetics is a discipline aimed at understanding
spatial patterns of genetic diversity by exploring the relation-
shipsbetween landscape features andmicroevolutionarypro-
cesses such as genetic drift, selection,mutation, and gene flow
(Manel et al. 2003; Manel and Holderegger 2013). This disci-
pline builds on the latest advances in molecular biology and
landscape data processing and is becoming increasingly im-
portant for fundamental and applied sciences (Storfer et al.
2010; Keller et al. 2015). Landscape genetics addresses issues
ranging from the identification of barriers to dispersal, to the
inference of the spread of nonnative species (Storfer et al. 2010).
The main objectives of landscape genetics are to spatially

describe effective dispersal (i.e., gene flow) and to identify
landscape features (e.g., roads, dams, urban areas, and rivers)
that affect functional connectivity (Manel et al. 2003; Storfer
et al. 2010; Manel and Holderegger 2013). To achieve these
objectives, landscape geneticists calculate genetic descriptors
that are subsequently compared with landscape features and
potential dispersal barriers (Balkenhol et al. 2009; Jaquiéry
et al. 2011; Bradburd et al. 2013). Analytical tools developed
for analyzing landscape genetic data often rely on empirical
correlations that allow an assessment of the possible influ-
ence of various evolutionary processes. For example, a signif-
icant and positive correlation between genetic and geographic
distances is generally considered indicative of isolation by dis-
tance (IBD; a spatial patternwhereby the homogenizing effect
of gene flow decreases and the relative effect of genetic drift
increases as the geographic distance between sites increases;
Hutchison and Templeton 1999).
However, because correlation does not imply causation,

processes can be incorrectly inferred from empirical correla-
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492 The American Naturalist
tions (Guillot et al. 2009). The likelihood of incorrectly infer-
ring causalities from correlation is exacerbated in landscape
genetics because it often implies intricate relationships among
landscape variables. In the IBD example described above,
the correlation between genetic and geographic distances
might be direct, indirect, and/or spurious. The correlation
is direct (i.e., the migration rate between two sites decreases
because they are far from one another) if no other variable
covaryingwith geographic distances causes the observed pat-
tern of genetic distance. However, if a variable covaries with
geographic distances (e.g., the number of barriers between
two sites) and causes the observed pattern, then the correla-
tion between genetic and geographic distances is considered
indirect. Alternatively, a correlation is spurious when two
variables are correlated because they are both influenced by
a third (unmeasured) variable (Cushman and Landguth 2010;
Prunier et al. 2015). In the two latter cases, processes are in-
correctly inferred from simple correlations. Consequently, the
relationships linking landscape features to genetic descriptors
have to be carefully interpreted, and they sometimes remain
unexplained due to our inability to disentangle intricate rela-
tionships between variables (Shipley 2000a; Grace 2006). Clar-
ifying causal relationships in landscape genetics is thus chal-
lenging but important (Guillot et al. 2009).

A solution to improve inferences of causal relationships
in landscape genetics may build on methods of causal mod-
eling (e.g., Cushman et al. 2006). Causal modeling proce-
dures, such as path analysis (Grace 2006), rely on the assess-
ment of the validity of a causal graph describing the expected
direct and indirect causal relationships among variables. Path
analysis was initially developed by one of the founding fathers
of population genetics, namely, SewallWright (1921). In path
analysis, the influence along each path of the causal graph
(i.e., the link between two variables) is estimated from cor-
relation/covariance among the involved variables. Almost a
century after its introduction by one of the most influential
population geneticists, and despite its relevance for analyzing
complex observational data, path analysis is still only occa-
sionally used in landscape genetics and in population genet-
ics in general.

Landscape geneticists generally focus on twomain types of
dependent variables that describe genetic diversity: (i) point
summary statistics, which describe the genetic diversity at the
sampling-site level (e.g., allelic richness or heterozygosity),
and (ii) pairwise summary statistics, which describe the ge-
netic differentiation (or distance) between pairs of sampled
populations or individuals (e.g., FST, Jost’s D). Several well-
establishedmethods allow a straightforward analysis of point
summary statistics in a path analysis framework (Shipley
2000a; Grace 2006). For pairwise statistics, however, the pro-
cess is more complex since the analysis of pairwise matrices
poses a series of analytical issues, notably because of the non-
independence of pairwise data (Legendre and Legendre 2012;
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Graves et al. 2013). Although pairwise data can be handled by
reducing multidimensionality, using nonmetric multidimen-
sional scaling or distance-based redundancy analysis, for in-
stance (e.g., Legendre and Fortin 2010), these types of analyses
were not developed to tease apart direct and indirect relation-
ships and are more suited to answer questions involving dis-
similarity matrices rather than distance matrices (Legendre
and Fortin 2010; Legendre et al. 2015). To address this spe-
cific data type, Cushman et al. (2006, 2013) proposed a causal
modeling procedure based on partial Mantel tests to compare
several competing causal models that link a matrix of genetic
distances to matrices of explanatory variables. This approach
permits an assessment of the goodness-of-fit of each model
by independently comparing the observed results of partial
Mantel tests (partial correlation coefficients and associated
P values) to what is theoretically expected under each model
specification. This approach has been proven to be powerful
for inferring causalities from relatively simple models (Cush-
man and Landguth 2010). However, the design of the causal
graph is constrained by the number ofmatrices of explanatory
variables that can be handled in partialMantel tests (only two),
which limits the complexity of competing models and pre-
vents the assessment of indirect relationships among vari-
ables. We believe that the use of alternative causal modeling
procedures, such as maximum-likelihood-based path analy-
sis (hereafter, “path analysis” for the sake of simplicity) and
the directional separation test (hereafter, “d-sep test”; Shipley
2000a, 2000b), can represent an interesting improvement over
the approach proposed by Cushman et al. (2006), as theymay
simultaneously account for all correlations implied in amodel
and permit the design (and comparison) of more complex
models, explicitly addressing both direct and indirect effects.
We propose a simple and integrative framework to study

direct and indirect links in the context of the analysis of land-
scape genetic data (and, more generally, of ecological and
evolutionary data involving pairwise matrices). As an intro-
duction, we briefly present the philosophy, advantages, and
disadvantages of path analysis and the d-sep test. Then, we
extend the applicability of these two methods to pairwise
matrices (including distance and dissimilarity matrices) by
developing two statistical approaches aimed at analyzing com-
plex causal models (i.e., including several pairwise matrices
linked both directly and indirectly) in landscape genetics. We
then test the robustness of path analysis and the d-sep test
applied to pairwise matrices using simulations. Finally, we
use an empirical data set involving patterns of genetic diver-
sity in a freshwater fish species (Gobio occitaniae) and land-
scape descriptors at the river basin scale to demonstrate how
these two statistical procedures can be used in landscape ge-
netics to answer important biological questions. This study
provides an opportunity to reconcile two important legacies
of Sewall Wright’s scientific life: population genetics and
path analysis.
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A Brief Description of Path Analysis and the D-Sep Test

An Introduction to Causal Graphs

Any causal modeling procedure is based on a causal graph
illustrating the a priori hypotheses underlying the potential
causal relationships within a set of variables. These relation-
ships are depicted by vertices (i.e., nodes) representing var-
iables that are linked by edges. A causal graph can contain
manifest variables, which are directly observed andmeasured
(Shipley 2000a); error variables, which represent all of the
factors that are not considered in the current graph; and la-
tent variables, which are hypothesized to exist but have not
been measured directly (Grace 2006). Causal graphs are an
intuitive approach to translate a causal hypothesis into a sta-
tistical language. The next step is to statistically test the rele-
vance of the causalmodel in relation to data. Here, we focused
on path analysis and the d-sep test, two methods dedicated to
testing causal models without latent variables (Shipley 2000a;
Grace 2006). These two methods are described below. When
the causal graphs contain latent variables, the dedicatedmethod
is called structural equation modeling (SEM; Grace 2006),
which is a generalization of path analysis. This method will
not be presented here.
Path Analysis

Path analysis is based on maximum-likelihood estimation
(Fisher 1950) of model parameters through the computation
of covariance matrices. Each causal model includes a set of
parameters, some of which are known (e.g., variances and
covariances of variables), whereas others are unknown (e.g.,
path coefficients that quantify the direct influence of a vari-
able along a given path;Wright 1921). The first step is to infer
values for these unknown parameters. This inference is made
iteratively by computing a maximum-likelihood fitting func-
tion (FML; Bollen 1989) that quantifies the difference between
the observed covariancematrix and a covariancematrix com-
puted using the inferred values. The best parameter values are
those that minimize this function. The absolute fit of the
model can be assessed by computing a x2 statistic and an as-
sociated P value to determine whether the minimal value of
FML is small enough to conclude that the observed data fit
the hypothesized causal model; a highP value indicates a high
probability that the observed data fit the hypothesized causal
model. Additionally, the relative fits of competingmodels can
be tested using an information-theoretic approach (e.g., using
Akaike’s information criterion [AIC]; Bollen 1989).

Path analysis requires linear relationships between vari-
ables—preferentially,multivariate normal data (Shipley 2000a;
Grace 2006)—and assumes that observations are independent,
which is notoriously not the case when considering pairwise
matrices (Legendre and Legendre 2012). Because of this lat-
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ter limitation, path analysis is not frequently used in land-
scape genetics.
D-Sep Test

Shipley’s d-sep test simultaneously tests for conditional in-
dependence relationships that should be true if the causal
model is verified. If these conditional independence relation-
ships do not exist in the empirical data, then the causal hy-
pothesis is rejected. These relationships are identified using
the directional-separation (d-separation) criterion (Pearl and
Verma 1987; Pearl 1988; Shipley 2003). However, there are
usually far too many d-separation relationships to test all
of them. The principle of the d-sep test is, hence, to identify
a basis set of mutually independent d-separation relationships
that together imply all others (Pearl 1988; Shipley 2000b).
Once this basis set is identified, each of these k independence
claims has to be tested against the empirical data. This can
be achieved through the use of Pearson’s partial correlation
coefficients or linear regressions, if the variables are normally
distributed and are linked by linear relationships, as well as
using more complex statistical methods in other cases. The
k P values obtained are equivalent to the probability levels
of the data, given each of the k d-separation relationships.
If all these tests are mutually independent, the k P values
can be combined using the equation

C p22
Xk

ip1

ln(Pi) ð1Þ

(Fisher 1938).
If all the independence relationships hold in the data, this

statistic follows a x2 distribution with 2k degrees of freedom.
The resulting test is called Fisher’s C test (Shipley 2000b).
A large C value, and thus a small resulting P value, implies
a poor absolute fit of the data to the model. In path analysis,
the relative fits of competing models can also be assessed
through the use of AIC adapted to the d-sep test (Cardon
et al. 2011; Shipley 2013).
As the d-sep test does not impose any inference of param-

eters, the conditions for its application are flexible: it can, for
instance, be applied to data sets with small sample sizes. Im-
portantly, two nodes in a causal graph that are d-separated
will also be conditionally independent in any data set gen-
erated by this graph, irrespective of the distribution of the
variables (Shipley 2000a; Pearl 2009). This means that differ-
ent modeling approaches (e.g., linear or nonlinear models,
Bayesian models, hierarchical models; Shipley 2009; Cardon
et al. 2011) can be used for testing the conditional indepen-
dence relationships provided these tests are appropriate for
the type of variables involved in the d-sep claims (Shipley
2009). The d-sep test is, therefore, a flexible method that
54.110.052 on March 23, 2018 10:43:49 AM
s and Conditions (http://www.journals.uchicago.edu/t-and-c).



494 The American Naturalist
cannot be used directly to infer path coefficients, although
estimates can be computed from a combination of indepen-
dent models.
A Note about the Use of P Values and AIC
in the Context of Causal Modeling

In the context of causal modeling, P values and AIC pro-
vide different—yet complementary—information. While AIC
values allow the identification of the best-fitting model among
a set of candidate models (the relative fit), P values provide
information about the absolute fit of the empirical covariance
matrix for a given model. This means that the best-fitting
model—with the lowest AIC—may be a poorly fitting model
if diagnosed through the inspection of P values. We therefore
encourage use of both the AIC and P values to infer the causal
structure of data. On a philosophical side note, and following
Goodman (1999), we here chose not to set any significance
threshold (e.g., a p 0:05): P values are hereafter interpreted
as the probability of obtaining a result equal to, or more ex-
treme than, what was actually observed under the null hy-
pothesis.
Extending Path Analysis and the D-Sep
Test to Pairwise Matrices

We hereafter present four statistical approaches aimed at
applying path analysis and the d-sep test to the analysis of
causal models involving pairwise matrices. Fully usable R
functions (R Development Core Team 2017) are available
online at https://doi.org/10.5281/zenodo.1048975.
Path Analysis Applied to Pairwise Matrices

To take into account the nonindependence of pairwise data
in path analysis, we used the maximum-likelihood popula-
tion effects (MLPE) approach developed by Clarke et al.
(2002; see also Van Strien et al. 2012). InMLPEmodels, iden-
tities of the two sites involved in a pairwise comparison are
treated as two random factors to take into account the spa-
tial dependency of pairwise data: each site is associated with
a random deviation from the intercept, and any pairwise val-
ues sharing a common source site thus share a common ran-
dom deviation. To apply path analysis to pairwise matrices,
we used the lavaan.survey R package (Oberski 2014) that
was initially developed to use SEM and path analysis with
hierarchically structured data. In this approach (hereafter,
“clustering-based path analysis”), the identities of sites in-
volved in a pairwise comparison were treated as clusters (i.e.,
each pairwise value was associated with two clusters), with
the second cluster being nested within the first. As a result,
all pairwise values originating from the same first cluster will
share a common random deviation from the intercept, al-
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though each pairwise value will also be attributed a unique
random effect associated with the second cluster being nested
within the first. To prevent some sites from beingmore influ-
ential than others in the computation of the first random
deviation, the identities of the two sites involved in a given
pairwise comparison are randomly permuted. This approach
allows the assessment of both the relative and absolute fits
of a model, as well as the P values associated with the path
coefficients, while partially taking into account the noninde-
pendence of pairwise data.
As an alternative approach to assess the P values associated

with path coefficients, we used a permutation procedure
aimed at randomly permuting rows and columns of input
matrices (Legendre 2000). This procedure provides the the-
oretical distribution of a given statistic (e.g., a Mantel cor-
relation) under the null hypothesis of the absence of relation-
ships between variables. An unbiased P value can then be
computed by comparing the observed value of the statistic to
its null distribution. This approach (hereafter, “permutation-
based path analysis”) was not used to quantify the probability
that the data fit the model, as the null distribution corre-
sponds to a scenario in which none of the paths are true;
rather, we aimed to test whether only the defined paths are
true. This approach involves the following four steps. First,
all matrices are independently permuted many times. Sec-
ond, the values of the unknown parameters (i.e., path coef-
ficients linking permutedmatrices according to the considered
causal model) are inferred by minimizing the difference be-
tween the covariance matrix computed from permuted data
and the observed (optimized) covariance matrix to create a
set of null causal models. The third and fourth steps consist
of creating null distributions for the parameters of interest
(here, values of the path coefficients) and computing unbi-
asedP values, respectively. The one-tailedP value of each path
coefficient is then computed as the proportion of permuted
path coefficient values lower than or equal to (respectively,
greater than or equal to) the observed path coefficient value
(Legendre 2000).
Finally, we built a parametric bootstrap procedure to quan-

tify the range of values (i.e., confidence intervals) that act as
good estimates of each unknown parameter value, while tak-
ing into account the presence of pairwise matrices in the path
analysis. This procedure is based on sampling, with simulta-
neous replacement of rows and columns, performed numer-
ous times. Parameter values are estimated each time through
path analysis, and 95% confidence intervals are provided as
the 2.5 and 97.5 percentiles of these bootstrapped parameters.
This method can be applied only to standardized data.
The D-Sep Test Applied to Pairwise Matrices

Building on the flexibility of the d-sep test, we developed an
approach that allowed the proper application of this method
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to distancematrices. This approach takes the formof a newR
function called dsep.test, permitting the use of the d-sep test
for both point summary and pairwise data.

In the first step, the basis set of independent d-separation
relationships implied by a given causal model is determined
using the basiSet function from the R package ggm (Mar-
chetti 2006). In the next step, each conditional relationship of
independence is tested using multiple regressions applied to
distance matrices (MRM; Smouse et al. 1986), a permutation-
basedmethod classically used to infer parameters and P val-
ues from regressions that can involve more than two pair-
wisematrices as explicative variables (contrary to the partial
Mantel test). We used the MRM function from the R pack-
age ecodist (Goslee and Urban 2007). For each tested model,
the P values can then be obtained for each independence
claim of the basis set and used as the Pi values in formula
(1) to test the absolute fit of the model. This new approach
is hereafter called the permutation-based d-sep test for the
sake of clarity.

In addition, we implemented an automatic calculation of
the AIC score related to the testedmodel to test for the relative
fits of competingmodels. AIC was only recently developed for
the d-sep test (Cardon et al. 2011; Shipley 2013), and the R
function has not been implemented in the ggm package.
Testing the Reliability of Path Analysis and the D-Sep
Test Applied to Pairwise Matrices: A Simulation Test

General Approach

To test the reliability of path analysis and the d-sep test to
take into account the nonindependence of pairwise data, we
simulated 1,000 data sets consisting of 50 sites each, and each
site was associated with five observations that were indepen-
dently drawn from five normal distributions. These variables
were separated into two independent variables (X1 and X2)
and three response variables (X3, X4, and X5). The response
variables were calculated as linear combinations of one or
two variables plus randomnoise (SD p 2). The causal model
structure was held constant across simulations, but linear
coefficients were randomly selected from a uniform distribu-
tion ranging from 0.8 to 1.6 for each simulation (scripts are
available online at https://doi.org/10.5281/zenodo.1048872).
From the five variables, we computed five Euclidean distance
matrices (1,225 pairwise values). With this procedure, dis-
tance matrices within simulated data sets were connected
by four predefined causal links (fig. 1A). We then used these
simulated data sets to test (i) the reliability of theP values and
AIC scores to detect adequate causal models among different
model structures and (ii) the reliability of P values and con-
fidence intervals for specific path coefficients in the case of
path analysis applied to pairwise matrices only.
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First, we tested the ability of the new approaches to detect
adequate causal models.We tested three types of models, each
of which included four paths (fig. 1A); the first type of model
fitted the four causal relationships predefined in the simu-
lated data sets (hereafter, “adequatemodel”), the second type
ofmodel fitted two of the four causal relationships (hereafter,
“intermediate model”), and the third type of model fitted
none of the four causal relationships (hereafter, “inadequate
model”). For each of the 1,000 simulated data sets, the three
types of models were tested using the path analysis/d-sep test
applied to point summary statistics, as well as the clustering-
based path analysis and the permutation-based d-sep test
applied to pairwise matrices. Clustering-based path analysis
and the permutation-based d-sep test can be considered ro-
bust to assess the relative fit of each model if the AIC score
of the adequate model calculated using these approaches is
lower than the AIC scores calculated for the intermediate
and inadequate models. We used the DAIC (the difference
between the AIC of the considered model and the AIC of
the best-fitting model; Burnham and Anderson 2002) as a
measure of the relative support of each model relative to the
best-fitting model (with DAIC ! 2 and DAIC ! 4 as thresh-
olds). Additionally, clustering-based path analysis and the
permutation-based d-sep test can be considered more accu-
rate than the approaches classically used for point-summary
statistics to assess the absolute fit of the data to the model
if the P value computed for the adequate model is higher
than the P values computed using the classical approaches.
For the inadequate model, we expected both the classical ap-
proaches and the approaches developed for pairwise matri-
ces to generate low P values.
Second, we tested the ability of clustering-based path anal-

ysis and permutation-based path analysis to compute reliable
P values for the path coefficients of a given model, as well as
the ability of the parametric bootstrap procedure developed
for pairwise matrices to provide more reliable confidence
intervals than bootstrap procedures not taking into account
the nonindependence of pairwise data. To do so, we built a
model combining six paths (fig. 2A): three of the paths fitted
the causal relationships predefined in the simulated data sets
(i.e., path coefficients of the adequate model; hereafter, “ad-
equate coefficients”), whereas the other three did not (i.e.,
path coefficients from the inadequate model; hereafter, “in-
adequate coefficients”). This model was fitted using classical
path analysis, clustering-based path analysis, and permutation-
based path analysis, and confidence intervals were assessed
using the parametric bootstrap procedure developed for pair-
wise matrices. The P values of each path coefficient were ob-
tained across the 1,000 simulated data sets. In methods de-
signed to account for the nonindependence of pairwise data,
the P values of the inadequate coefficients should generally
be high, whereas the P values of the adequate coefficients
should generally be low. On the contrary, the classical
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Figure 1: Simulated pairwise data were used to test the reliability of the new causal approaches developed for pairwise matrices to detect ad-
equate causal models. A, Simulated data were generated according to a given causal scenario (including four paths), and we fitted a first causal
model accounting for the four causal relationships predefined in the simulated data sets (adequate model), a second causal model accounting for
two of the four causal relationships (intermediate model), and a third causal model accounting for none of the four causal relationships (in-
adequate model). We expected the adequate model to have better relative and absolute fits to the simulated data than the intermediate and
inadequate models when using causal approaches developed for pairwise data. B, For each statistical approach (approaches that did not account
for pairwise data: path analysis and d-sep test; approaches accounting for pairwise data: clustering-based path analysis and the permutation-
based d-sep test), the relative fit of each model to the simulated data is provided as the frequencies of the difference between the Akaike’s in-
formation criterion (AIC) of the considered model and the AIC of the best-fitting model (DAIC) values (dark gray: DAIC 1 4; medium gray:
2 ! DAIC ! 4; light gray: DAIC ! 2). C, For each statistical approach, the absolute fit of each model to the simulated data is provided as boxplots
of the P values obtained over 1,000 simulations. The solid line within each box indicates themedian; the length of the box is the interquartile range
(from the first to the third quartile). The lower whisker extends to the first quartile minus 1.5 times the interquartile range; the upper whisker
extends to the third quartile plus 1.5 times the interquartile range. Small circles represent data points located beyond whiskers.
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Causal Modeling in Landscape Genetics 497
approach should consistently provide low P values irrespec-
tive of the coefficient. Similarly, the 95% confidence inter-
vals of adequate coefficients calculated using the parametric
bootstrap procedure developed for pairwise matrices should
not include zero, whereas the confidence intervals of inade-
quate coefficients should include zero.
Results

The AIC scores computed using clustering-based path anal-
ysis were more reliable than the AIC scores computed using
classical path analysis to assess the relative fits of competing
This content downloaded from 193.0
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models (fig. 1B). Notably, the adequate model was identified
as one of the best-fitting models in 91.4% of the simulations
(DAIC ! 2; light gray bars in fig. 1B) when using clustering-
based path analysis, compared with only 57.5% of the sim-
ulations when using classical path analysis. Additionally, the
intermediate model was identified as one of the best-fitting
models in only 39.4% of the simulations when using clustering-
based path analysis, compared with 50.8% when using clas-
sical path analysis. However,DAIC of the intermediatemodel
ranged from 2 to 4 units in 32.2% of the simulations when
using clustering-based path analysis (medium gray bars in
fig. 1B), indicating that this method penalized the absence
A

B

Figure 2: Simulated pairwise data were used to test the reliability of the new causal approaches developed for pairwise matrices to properly
estimate the fit of the path coefficients. A, Simulations were generated according to a predefined scenario, and both path coefficients corre-
sponding to this predefined scenario (adequate paths; black arrows in the graph) and path coefficients not defined in this predefined scenario
(inadequate paths; dotted arrows in the graph) were estimated and tested using classical path analysis, clustering-based path analysis and
permutation-based path analysis. B, Boxplots summarizing the P values of the adequate and inadequate coefficients obtained over 1,000 sim-
ulations using classical path analysis, clustering-based path analysis, and permutation-based path analysis. For the sake of clarity, the P values of
the three adequate and three inadequate coefficients are combined. See the figure 1C legend for details.
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of a part of the causal structure by only a small increase in the
AIC score, and thus there was only a small decrease in rela-
tive fit. Interestingly, the relative fits of all three models were
almost always correctly estimated using both the permutation-
based d-sep test and the classical d-sep test; for example,
DAIC ! 2 was observed in 99.2% and 100% of the simula-
tions, respectively, using the adequate model (dark gray bars
in fig. 1B).

Values ofP assessing the absolutefit of the adequatemodel
were strikingly higher when clustering-based path analysis
and the permutation-based d-sep test (median of the 1,000 sim-
ulated P values p 0:422 and 0.571, respectively) were used
compared with the classical approaches (median ! 0:001 for
both the classical path analysis and d-sep test; fig. 1C). This
indicates that when the null hypothesis is true, theP value ap-
pearsmuchmore effectivewhen taking into account the non-
independence of pairwise data. Clustering-based path analy-
sis and the permutation-based d-sep test hence appeared far
more reliable than classical approaches to assess the absolute
fit of a causal graph. The P values of the intermediate model
were high when clustering-based path analysis (median p
0:471) was used but were low when the permutation-based
d-sep test (median p 0:010) was used, indicating a differ-
ence in the sensitivity of these twomethods to detect models
that do not perfectly reflect the causal structure underlying
the data; the permutation-based d-sep test offers higher sen-
sitivity than clustering-based path analysis. As expected, the
P values of the inadequate model computed using any of
the approaches were very low (medians ! 0:001 in all cases;
fig. 1C).

Clustering-based path analysis and permutation-based path
analysis were also more reliable in estimating the P values
of path coefficients than classical path analysis (fig. 2B). In-
deed, accounting for the nonindependence of pairwise data
led to an increase in the P values of inadequate coefficients
(median of 0.179 and 0.259 with clustering-based path anal-
ysis and permutation-based path analysis, respectively; fig. 2B),
whereas the P values of adequate coefficients remained low
(median smaller than 0.001 for all methods). Additionally,
the parametric bootstrap procedure developed for pairwise
matrices greatly improved the reliability of the 95% confi-
dence intervals of inadequate coefficients: only 4% of confi-
dence intervals computed for inadequate coefficients did not
include zero when taking into account the pairwise matrix
structure of the data. However, the confidence intervals of ad-
equate coefficients computed using this procedure included
zero in 28.5% of the simulations.
Empirical Illustration of Path Analysis
and the D-Sep Test

We used a data set involving a freshwater fish species (the
gudgeon Gobio occitaniae) to illustrate how path analysis
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and the d-sep test can be used when the causal models in-
clude either point summary statistics or pairwise matrices.
Our aims were (i) to unravel direct and indirect relation-
ships between landscape features (and associated processes)
and genetic diversity in dendritic river networks and (ii) to
disentangle the relative effects of natural versus anthropo-
genic factors on spatial patterns of genetic diversity in gud-
geon.
Data Collection

Genetic Data. A total of 92 sites scattered across the whole
Garonne-Dordogne river catchment (southwestern France;
see fig. 3A) were sampled, and a maximum of 30 gudgeons
per site were caught by electrofishing during spring 2010
and 2011. Nine out of these 92 sites were discarded from
the analysis because fewer than 10 samples were available.
The final database included 1,928 individuals sampled from
80 sites distributed across 32 rivers. For each individual, a
small piece of pelvic fin was collected and preserved in 70%
ethanol. DNA was extracted using a salt-extraction protocol
(Aljanabi and Martinez 1997), and individuals were geno-
typed for eight microsatellite loci, as described in Blanchet
et al. (2010). Neither departures fromHardy-Weinberg equi-
librium nor null alleles were detected for any of these loci
(Fourtune et al. 2016). Eight samples were not successfully
genotyped and were removed from the database.
Genetic diversity at the sampling-site level was assessed

using Fstat 2.9.3 (Goudet 2001) by computing the standard-
ized allelic richness (Ar), that is, the expected mean number
of alleles (over all loci) in a random subsample of N individ-
uals at each sampling location, where N is the smallest sam-
ple size across populations (N p 10). Genetic differentiation
among sampling sites was measured using Jost’s D (Jost
2008). This metric measures the allelic variation between
pairs of populations; it has a null (or slightly negative) value
when there is no differentiation between two populations and
a value of one when two populations have no alleles in com-
mon. Jost’s D among sites was calculated using the mmod
package (Winter 2012) in the R environment.

River Topography. We selected three variables describing
the topography and network arrangement at each sampling
site, as network connectivity and topology are known to af-
fect biodiversity patterns in river networks (Campbell Grant
et al. 2007; Carrara et al. 2012; Paz-Vinas and Blanchet 2015).
First, the betweenness centrality value (an index of river con-
nectivity quantifying the positional importance of a node
within anetwork; Freeman1977)of the closest confluenceup-
stream from each site was estimated using NetworkX (Hag-
berg et al. 2008), with higher values corresponding to nodes
of higher importance for network connectivity. Second, local
altitude and distance from the river mouth were obtained
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from the French Theoretical Hydrological Network (Réseau
Hydrologique Théorique français; Pella et al. 2012). Third,
the geographic distance along the river network (riverine dis-
tance) between each pair of sites was computed using Quan-
tumGIS software (Quantum GIS Development Team 2017).

Physicochemical Quality. We hypothesized that the physi-
cochemical characteristics of the sampling sites may affect
the density of the fish populations (i.e., sampling sites with
good water quality and optimal physical properties should
sustain high fish densities) and, hence, the effective popula-
tion size (assuming a positive correlation between abun-
dance and effective population size and, ultimately, genetic
diversity). The data thus indirectly reflected the possible in-
fluence of genetic drift on the genetic summary statistics. Data
were obtained from the database of the Water Information
System of the Adour Garonne basin (Système d’Information
sur l’Eau du Bassin Adour Garonne [SIEAG]; http://adour
-garonne.eaufrance.fr). Among other variables, this database
compiles chemical characteristics of surface water (e.g., con-
centrations of various chemical compounds), measured sev-
eral times a year at numerous sites in theGaronne-Dordogne
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river basin. Only sites with data available for March, May,
July, September, and November of 2011 were selected from
the SIEAG database. Most of our sampling sites overlapped
with a SIEAG site, in which case the mean of the five tempo-
ral measures was used as a proxy for the chemical quality of
our sampling sites. When the overlap was not perfect, each
sampling site was assigned to the nearest SIEAG site (on the
same river), and the average values of variables at this nearest
SIEAG site were used as surrogates for the chemical quality
of the sampling site. Three sampling sites had no SIEAG site
close enough to obtain reliable information (distance greater
than 10 km) and were therefore discarded from the final
database.
We specifically obtainedwater temperature andoxygen con-

centration data to test the assumption that a site with an op-
timal temperature and a high oxygen concentration can host
larger fish densities. Additionally, we selected five chemical
components directly affected by human activities and con-
sidered as good indicators of water quality (ammonium, ni-
trate, nitrite, orthophosphate, and phosphorus concentra-
tions). Principal component analysis of these five chemical
components (see fig. A1, available in the online appendix)
A B

C

Figure 3: A, Geographic distribution of the 83 sites in which Gobio occitaniae was sampled within the Garonne-Dordogne river basin to char-
acterize the genetic diversity (allelic richness and Jost’s D measured at microsatellite markers) of each sampling site. The color of each dot is
related to the relative allelic richness: white dotsp lowest values; black dotsp highest values. B, Biplot of the allelic richness measured at each
sampling site plotted against the distance of each site from the outlet. C, Biplot of Jost’s D measured between each sample pair plotted against
pairwise riverine distance.
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was performed using the R package ade4 (Dray and Dufour
2007). The coordinates of each site on the first axis, which
accounted for 62.4% of the variance, were used to create a
synthetic variable (hereafter, “chemicals”), representing the
amount of chemical components at each site. Low values cor-
respond to high ammonium, nitrate, nitrite, orthophosphate,
and phosphorus concentrations.

Habitat Fragmentation. We selected three variables related
to habitat fragmentation, as it has previously been shown to
affect genetic diversity in gudgeon (Blanchet et al. 2010).Hab-
itat fragmentation variables were obtained from the Référ-
entiel des Obstacles à l’Écoulement database (Onema 2010)
that identifies and georeferences barriers to water flow along
French rivers. Twomain types of obstacles, weirs (!4m high)
and dams (5–30 m high, in general), were considered here.
We measured the home range of each population, that is,
the riverine geographic distance a fish can access without be-
ing stopped (both upstream, downstream, and in tributaries)
by a weir or dam (Prunier et al. 2017). This is thus a direct
measure of the impact of weirs and dams on fish habitat avail-
ability. Furthermore, the total number of weirs and dams
along the river stretch between each pair of sites was calculated.
Because these obstacles may have differential influence on
genetic diversity, they were considered separately.
Statistical Analysis

Point Summary Statistics. Allelic richness (Ar) was analyzed
using both classical path analysis and the d-sep test. For the
two approaches, a full causal model was first designed using
theoretical and a priori knowledge. In thismodel (fig. 4A), alle-
lic richness is expected to be directly linked to two human-
related factors (chemicals and home range) and to five nat-
ural factors (betweenness centrality, oxygen concentration,
temperature, distance from themouth, and altitude).We con-
strained altitude and distance from the mouth to be related
one to the other, and we assumed direct but also indirect
relationships between altitude and allelic richness through
temperature and oxygen concentration (fig. 4). All other re-
lationships were direct (fig. 4). Prior to analysis, all variables
were centered and scaled to obtain standardized parameter
estimates (Schielzeth 2010).

This full model was tested through path analysis using the
sem function from the lavaan R package (Rosseel 2012). We
thus obtained the FML value, the corresponding P value, and
the AIC of the model. We used the function dsep.test (avail-
able online at https://doi.org/10.5281/zenodo.1048975) to
test the full model using a d-sep test approach in which con-
ditional dependencies were tested through linear regressions.
The full model was then simplified by removing paths one by
one until the model with the best relative fit (i.e., the lowest
AIC score) was identified. The absolute fit of this model was
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All use subject to University of Chicago Press Term
computed to ensure that the observed data were coherent
with the model. This process permitted the identification
of variables with amajor influence on allelic richness. Finally,
path analysis was used to collect the inferred path coefficients
and the residual variance of allelic richness (corresponding to
the amount of variance that was not explained by the model).

Pairwise Summary Statistics. In our data set, four variables
were present in the form of pairwise distance matrices: Jost’s
D (dependent variable), the counts of weirs and dams (sep-
arately) between each pair of sites, and the river distance
between pairwise sites. Additionally, pairwise dissimilarity
matrices for chemicals, altitude, temperature, and oxygen con-
centrationwere computed as the absolute differences between
sites. These dissimilarity matrices reflected the isolation-by-
environment hypothesis (IBE; Rundle and Nosil 2005; Sex-
ton et al. 2014). Using these eight variables, we designed a
complete model (fig. 5A) in which the number of weirs and
dams between sites and pairwise differences in oxygen con-
centration and chemicals have a direct effect on genetic dif-
ferentiation, whereas pairwise differences in altitude, temper-
ature, and riverine distance have both direct and indirect
effects (fig. 5A). As conducted previously, all variables were
centered and scaled to facilitate interpretation. The full model
was tested through both clustering-based path analysis and
the permutation-based d-sep test. The model was simplified
as explained previously until the model with the best relative
fit was obtained. The coherence of the observed data to the
best-fittedmodel was tested using clustering-based path anal-
ysis and the permutation-based d-sep test, whereas the P val-
ues and confidence intervals of its path coefficients were com-
puted using clustering-based path analysis, permutation-based
path analysis, and the parametric bootstrap procedure devel-
oped for pairwise matrices.
Results

Description of Genetic Data. Allelic richness ranged from
5.401 to 9.582, with a mean value of 7.793 (50.887). No ap-
parent spatial pattern could be visually identified (fig. 3A).
However, there was a significant decrease in Ar from down-
stream to upstream sections of the landscape (Pearson corre-
lation between allelic richness and distance from the river
mouth, r p 20:513, df p 1, P ! :001; fig. 3B). Full data
sets are deposited in the Zenodo repository: https://doi.org
/10.5281/zenodo.1048918 (Fourtune et al. 2017).
Jost’s D ranged from20.029 to 0.627, with a mean value

of 0.196 (50.124). We failed to detect any IBD pattern
since Jost’sD did not increase with the riverine distance be-
tween sites (Mantel test, r p 0:055, P p :172; fig. 3C).

Causal Modeling Applied to Point Summary Statistics. Sim-
plification of the full model led to the removal of seven paths
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Figure 4: Graphical representations of the complete model depicting possible causal relationships between the allelic richness of the freshwater
fish Gobio occitaniae quantified across 83 sampling sites in the Garonne-Dordogne river basin and anthropogenic and natural factors (A) and
the best causal model obtained for fitting the data using classical path analysis (results were similar when using the classical d-sep test) and after a
simplification procedure (B). Single-headed arrows indicate a causal link. Double-headed arrows indicate covariation. Solid and dashed lines
represent positive and negative values, respectively; their width is proportional to the absolute value of the corresponding path coefficient. Gray
arrows represent paths removed during the simplification procedure.
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Figure 5: Graphical representations of the complete model depicting possible causal relationships between the genetic differentiation (Jost’sD)
of the freshwater fish Gobio occitaniae quantified across 83 sampling sites in the Garonne-Dordogne river basin and anthropogenic and natural
factors (A) and the best causal model obtained for fitting the data using clustering-based path analysis (results were similar when using the
permutation-based d-sep test) and after a simplification procedure (B). Single-headed arrows indicate a causal link. Double-headed arrows in-
dicate covariation. Solid and dashed lines represent positive and negative values, respectively; their width is proportional to the absolute value of
the corresponding path coefficient. Gray arrows represent paths removed during the simplification procedure.
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before the model with the lowest AIC score was obtained
(table 1; fig. 4B). Both approaches (path analysis and the
d-sep test) led to the same best-fitted model. In this best-
fitted model, allelic richness was directly correlated with the
This content downloaded from 193.0
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distance from the outlet, the altitude, and the oxygen concen-
tration. Allelic richness was higher in downstream sites at a
low altitude and with a high oxygen concentration (table 2).
Altitude was also indirectly correlated with allelic richness
Table 1: Path analysis and d-sep test statistics used to disentangle the effects of environmental factors on allelic richness
(Ar, point summary statistics) and genetic differentiation (Jost’s D, pairwise summary statistics) in a freshwater fish species
(Gobio occitaniae) sampled in a river network
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Path analysis applied to point summary statistics (Ar):

Full model
 41.455
 15
 !.001
 11.445

Best-fitted model
 1.656
 4
 .799
 26.344
D-sep test applied to point summary statistics (Ar):

Full model
 59.676
 30
 .001
 109.676

Best-fitted model
 4.549
 8
 .804
 32.549
Clustering-based path analysis applied to pairwise
summary statistics (Jost’s D):
Full model
 82.273
 10
 !.001
 62.273

Best-fitted model
 3.286
 4
 .512
 24.714
Permutation-based d-sep test applied to pairwise
summary statistics (Jost’s D):
Full model
 57.509
 20
 !.001
 121.509

Best-fitted model
 4.149
 8
 .843
 46.149
Note: For each metric (Ar and Jost’s D), we simplified a full model (i.e., a model including all paths described in figs. 4, 5) until a model with the
lowest Akaike’s information criterion (AIC) score (best-fitted model) was obtained. The model simplification was performed using either path anal-
ysis or the d-sep test for Ar and either path analysis (clustering-based path analysis) or the d-sep test (permutation-based d-sep test) taking into
account the structure of pairwise matrices. The term “test statistics” represents the maximum-likelihood fitting function in the case of path analysis
and Fisher’s C in the case of the d-sep test.
Table 2: Estimates of the path coefficients and their associated P values and 95% confidence intervals (CIs) of the
best-fitted models linking environmental features to allelic richness (Ar, point summary statistics) and genetic differen-
tiation (Jost’s D, pairwise summary statistics) for a freshwater fish (Gobio occitaniae) sampled in a river network
Path coefficient
 P
 95% CI
Point summary statistics (Ar):

Distance from the outlet → allelic richness
 2.407
 .005
 [2.720;2.127]

Altitude → allelic richness
 2.392
 .005
 [2.663;2.095]

Oxygen → allelic richness
 .377
 !.001
 [.227;.554]

Temperature → oxygen
 2.453
 !.001
 [2.648;2.266]

Altitude → temperature
 2.745
 !.001
 [2.899;2.599]
Pairwise summary statistics (Jost’s D):

Altitude → Jost’s D
 .094
 !.001
 [.052;.139]

Oxygen → Jost’s D
 .071
 !.05
 [.039;.105]

Temperature → Jost’s D
 .265
 !.001
 [.226;.304]

Weirs → Jost’s D
 .144
 !.001
 [.110;.182]

Riverine distance → weirs
 .266
 !.001
 [.234;.299]

Altitude → weirs
 .329
 !.001
 [.289;.369]

Riverine distance → oxygen
 2.069
 !.001
 [2.101;2.038]

Temperature → oxygen
 .177
 !.001
 [.142;.213]

Altitude → temperature
 .577
 !.001
 [.544;.607]

Riverine distance → temperature
 2.104
 !.001
 [2.135;2.072]

Riverine distance → altitude
 .247
 !.001
 [.214;.283]
Note: For Ar, path coefficients, P values, and 95% CIs were obtained using classical path analysis. For genetic differentiation, path coefficients
and P values were obtained using clustering-based path analysis (results were similar when using permutation-based path analysis), whereas
95% CIs were obtained using the parametric bootstrap procedure developed for pairwise matrices.
c).
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through a pathway that sequentially involved temperature
and the oxygen concentration (fig. 4B). The residual variance
of Ar was 0:5085 0:080, which indicated that almost 50%
of its total variance was explained by this best-fitted model.

Causal Modeling Applied to Pairwise Matrices. Irrespective
of the approach, the simplification procedure led to the grad-
ual removal of six paths before the model with the lowest
AIC score was obtained (table 1; fig. 5B). In this best-fitted
model, Jost’s D was directly correlated with the differences
in altitude, temperature, oxygen concentration, and thenum-
ber of weirs between sites. All these explanatory variables
were also correlated with riverine distance through direct
pathways and, in the case of weirs, temperature and oxygen,
through indirect pathways involving other environmental
variables (table 2; fig. 5B).
Discussion

Within a landscape, environmental variables can have com-
pounding and contrasting impacts on spatial patterns of ge-
netic diversity, and properly inferring these impacts is a key
challenge in landscape genetics (Storfer et al. 2010). Here, we
built on the framework of path analysis and the d-sep test
(which we extended to the analysis of pairwise matrices) to
provide landscape geneticists with a reliable statistical tool
to improve their ability to unravel direct and indirect rela-
tionships between landscape features and the spatial distri-
bution of genetic diversity.
Validation of Path Analysis and the D-Sep Test
Applied to Pairwise Matrices

We improved the two commonly used causal modeling ap-
proaches (path analysis and the d-sep test; Shipley 2000b;
Grace 2006) by extending their validity to the analysis of
causalmodels comprising pairwisematrices and by using var-
ious procedures such as permutations, bootstrapping, and
specificationof randomeffects.Weprovide operationalR func-
tions for these four improved approaches online at https://
doi.org/10.5281/zenodo.1048975,making themdirectly trans-
ferable to other biological systems. The simulations demon-
strated that, as expected, our improved procedures were ro-
bust in identifying the best causal model compared to path
analysis or d-sep tests that do not explicitly account for non-
independence of pairwise data. Although clustering-based
path analysis does not account for total nonindependence
between pairwise data because of the nested structure of ran-
dom effects, it is noteworthy that the approach is a major
improvement over classical path analysis. However, clustering-
based path analysis imperfectly assessed the relative and ab-
solute fits of models that did not perfectly reflect the causal
structure underlying the data (intermediatemodel).We there-
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fore suggest that clustering-based path analysis be used as a
secondary approach to ensure/refine results obtained from
the permutation-based d-sep test, if needed.
This simulation study was also used to test whether

clustering-based path analysis and permutation-based path
analysis were reliable in inferring the P values of path co-
efficients connecting pairwise matrices and, hence, model
parameters. We showed that both methods greatly outper-
formed traditional path analysis. Additionally, the parametric
bootstrap procedure developed for pairwise matrices pro-
vided reliable confidence intervals for path coefficients, de-
spite a tendency to underestimate these intervals in the case
of adequate coefficients.
Although robust, the results of our simulation study should

be considered with caution as we explored only a small set of
variables.We therefore call for additional simulations (Land-
guth et al. 2015) to further assess the reliability of clustering-
based path analysis, permutation-based path analysis, and
the permutation-based d-sep test, especially when compared
to other traditional statistical procedures used in landscape
genetics. Furthermore, we encourage further methodological
developments for the implementation of the MLPE proce-
dure (Clarke et al. 2002) into the framework of clustering-
based path analysis, as it is currently based on a hierarchical
structure of random effects.
Empirical Application of Path Analysis and the
D-Sep Test Applied to Pairwise Matrices

When applied to empirical genetic data for Gobio occitaniae
obtained from awhole river basin, both path analysis and the
d-sep test identified the best-fitted causal models depicting
both direct and indirect relationships between genetic sum-
mary statistics and landscape predictors. Our results strongly
suggest that both allelic richness and pairwise measures of
genetic differentiation were mainly related to natural land-
scape features (altitude, temperature, and oxygen concentra-
tion) and that at such a large spatial scale, anthropogenic
factors (related to habitat fragmentation and water pollu-
tion) were negligible drivers of genetic diversity in this spe-
cies (with the exception of weirs).
Interestingly, some landscape features such as altitude were

identified as direct drivers of both allelic richness and genetic
differentiation. There was indeed a strong direct negative re-
lationship between allelic richness and altitude, indicating
that allelic richness was higher in sampling sites located at
lower altitudes. Similarly, we found a direct positive relation-
ship between the difference in altitude and pairwisemeasures
of genetic differentiation between sites: the higher the differ-
ence in altitude, the higher the genetic differentiation. This
type of direct relationship between altitude and genetic sum-
mary statistics for a freshwater fish is, to our knowledge, rarely
presented in the literature (but see Faulks et al. 2011) and
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could reflect two nonexclusive processes: the past coloniza-
tion history of G. occitaniae and the contemporary influence
of asymmetric gene flow toward downstream sites. First, al-
titudemay reflect historical contingencies whereby glacial re-
fugia during the last glaciation event (∼10,000 years ago)
were mainly found in lowlands. Glacial refugia (in down-
stream sites) should indeed be more genetically diverse than
recently colonized areas (in upstream sites; Paz-Vinas et al.
2015), whereas larger distances from the refugia should be
associated with higher genetic differentiation (Costedoat and
Gilles 2009). Second, altitude could be a good surrogate for
the unidirectional water flow of rivers that favors gene flow
from upstream (sites at high altitude) to downstream (sites
at low altitude; Paz-Vinas et al. 2015). The direct negative re-
lationship between distance from the outlet and allelic rich-
ness could similarly stem from these two mechanisms.

For both allelic richness and pairwise measures of genetic
differentiation, we additionally found indirect relationships
between altitude and genetic diversity. These indirect rela-
tionships were mediated through water temperature and ox-
ygen concentration. These two indirect relationships were
expected to underline the effect of genetic drift. Oxygen is an
important driver of fish species distribution in river networks
(Crispo and Chapman 2008), and we hypothesized that higher
oxygen concentrations may sustain higher fish densities (or
at least sites with extremely low oxygen availability may have
higher fishmortality). Assuming that density is positively re-
lated to the effective population size in fish (Belmar-Lucero
et al. 2012), oxygen limitation may directly alter allelic rich-
ness and, ultimately, genetic differentiation through genetic
drift (Hutchison and Templeton 1999). In the same way, be-
cause water temperature and oxygen availability are nega-
tively correlated, higher water temperatures may also be re-
lated to lower effective population sizes, leading to an increase
in genetic drift and, consequently, genetic differentiation. This
unmeasured effect of genetic drift may also explain the direct
effects of differences in altitude andwater temperature on ge-
netic differentiation. The direct links between differences in
water temperature, differences in oxygen concentration, and
genetic differentiationmay stem from the additional effect of
IBE, a process that occurs when populations inhabiting dif-
ferent environments experience divergent patterns of selec-
tion (Rundle and Nosil 2005; Sexton et al. 2014). As a con-
sequence, dispersing individuals may be maladapted to new
environments, with reduced fitness and reproductive success,
thereby decreasing geneflowbetween environmentally differ-
ent areas (Crispo et al. 2006). Water temperature and oxygen
concentration may thus act as important selective pressures
inG. occitaniae—a hypothesis that deserves further investiga-
tion. Nonetheless, our study presents, to our knowledge, one
of the first demonstrations of a direct relationship between
oxygen availability, water temperature, and genetic diversity
in a freshwater fish species.
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Regarding anthropogenic factors, weirs were found to have
an impact on genetic differentiation,whereas the link between
dams and genetic differentiation was discarded. This is sur-
prising since weirs are not as high (1–4 m) as dams (5–30m)
and are generally expected to bemore permeable to dispersal
than dams (Blanchet et al. 2010). However, weirs are also
generally older (they can be as old as 400 years, whereas dams
are generally no more than 60 years old): considering the
possible delay between anthropogenic impacts and the ensu-
ing genetic response (Smith and Bernatchez 2008), it is pos-
sible that dams are too recent to have left a significant genetic
imprint on the spatial patterns of genetic differentiation. A
nonexclusive hypothesis may be that the relatively low influ-
ence of dams on genetic differentiation can be explained by
their small numbers in the network (there are, on average,
fourfold fewer dams than weirs between sites). The influence
of weirs as factors limiting dispersal and increasing genetic
differentiation in freshwater fish has been shown in previous
studies (Raeymaekers et al. 2009; Blanchet et al. 2010; Faulks
et al. 2011), and our study therefore confirms these findings
at a larger spatial scale while taking other covariables into ac-
count.
It is noteworthy that we also found indirect relation-

ships between geographic isolation and genetic differentia-
tion (through the number of weirs and the differences in al-
titude, water temperature, and oxygen concentration between
sites), despite the absence of any direct relationship between
riverine distance and Jost’s D. IBD patterns are generally
interpreted as imprints of geneflow and genetic drift (Hutchi-
son and Templeton 1999), although the exact mechanisms
underlying these patterns are rarely unraveled. Here, using
path analyses, we were able to highlight potential causal path-
ways linking geographic distance to genetic differentiation:
this relationship most probably arose from the spatial covari-
ation between geographic distances, number of weirs, and dif-
ferences in altitude, water temperature, and oxygen concen-
tration. The use of causal modeling allowed the unraveling of
multiple and complex relationships between geographic dis-
tance and genetic differentiation, which is essential for fun-
damental knowledge and applied perspectives. Of course, the
relationship between geographic isolation and genetic differ-
entiation may also result from alternative processes that we
failed to model properly (Ewers and Didham 2006), and this
should be investigated in future studies. For instance, the
complexity of the river network is expected to play a major
role in genetic differentiation of aquatic organisms (Paz-Vinas
and Blanchet 2015), with isolated upstream populations act-
ing as reservoirs for unique and rare alleles, hence trigger-
ing high genetic differentiation between upstream and other
populations.
Causal modeling taking both direct and indirect effects

into account provides a better appraisal of factors driving the
spatial distribution of alleles in river networks.Most previous
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studies on spatial patterns of genetic diversity in aquatic or-
ganisms focused on the relationships between allelic richness
and distance from the river mouth and generally found an
increase in genetic diversity from the source to the mouth
of river networks (reviewed in Paz-Vinas et al. 2015).We also
uncovered this general pattern, although the use of path anal-
ysis procedures suggested that several other environmental
variables were linked to allelic richness, even in a model in
which the relationship between distance from the outlet and
allelic richness was taken into account. This result illustrates
the strength of causal modeling to unravel complex processes
shaping spatial patterns of genetic diversity that simulta-
neously involve several key environmental variables, notably
in landscapes with high spatial covariation such as river net-
works.
General Conclusion

When adapted to pairwise matrices, causal modeling allows
the assessment of complex competing causal models, depict-
ing the a priori hypotheses concerning causal relationships
among explanatory variables. The proposed framework con-
stitutes a promising alternative to the causalmodeling proce-
dure proposed by Cushman et al. (2006), as it allows the as-
sessment of both direct and indirect causal relationships among
numerous predictors.

Nevertheless, caution must be taken when using causal
modeling. Causal modeling procedures rely directly on the
formally stated a priori causal hypotheses depicted in the ini-
tial causal model. As a first consequence, inferred relation-
ships among variables cannot be considered as absolute causal
links; rather, these relationships can be considered as only pos-
sible causal links because some important but unknown (or
unmeasured) variables may have been overlooked. Although
investigation of the interplay between direct and indirect re-
lationships in the optimal model may reveal hidden path-
ways, thus shedding light on the biological processes acting
on the dependent variable, researchers should always keep
in mind that a causal model cannot provide information be-
yond stated a priori hypotheses.Our empirical data set exem-
plifies this observation appropriately, with genetic drift iden-
tified as a possible driver of spatial genetic variation in G.
occitaniae only under the hypothesis of a direct relationship
between oxygen concentration and the effective population
size. As a second consequence, causal modeling cannot be
confidently considered as a data mining procedure, as in-
vestigation of correlation coefficients in the absence of any
implicit a priori hypothesis (and thus in the absence of any
formal causalmodel)may produce spurious conclusions (Le-
gendre and Legendre 2012; Prunier et al. 2015). Note also
that the interpretation of causal modeling becomes more
complex as the number of predictors increases. The keys to-
ward the successful use of causal modeling are thus (i) a well-
This content downloaded from 193.0
All use subject to University of Chicago Press Term
thought-out initial set of possible causal models, (ii) a cau-
tious interpretation of the combination of AIC, P values and
confidence intervals, together providing a body of evidence
as to the relevance of considered models, and (iii) proper bi-
ological interpretation of inferred direct and indirect rela-
tionships in the light of formally stated a priori hypotheses.
Keeping these prerequisites in mind, we advocate the use of
causal modeling as a powerful explanatory tool in landscape
genetics.
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